CERIAS - Center for Education and Research in Information Assurance and Security

Skip Navigation
CERIAS Logo
Purdue University
Center for Education and Research in Information Assurance and Security

SymCerts: Practical Symbolic Execution For Exposing Noncompliance in X.509 Certificate Validation Implementations

Sze Yiu Chau - Purdue University

Apr 05, 2017

Abstract

The X.509 Public-Key Infrastructure has long been used in the SSL/TLS protocol to achieve authentication. A recent trend of Internet-of-Things (IoT) systems employing small footprint SSL/TLS libraries for secure communication has further propelled its prominence. The security guarantees provided by X.509 hinge on the assumption that the underlying implementation rigorously scrutinizes X.509 certificate chains, and accepts only the valid ones. Noncompliant implementations of X.509 can potentially lead to attacks and/or interoperability issues. In the literature, black-box fuzzing has been used to find flaws in X.509 validation implementations; fuzzing, however, cannot guarantee coverage and thus severe flaws may remain undetected. To thoroughly analyze X.509 implementations in small footprint SSL/TLS libraries, this paper takes the complementary approach of using symbolic execution.

We observe that symbolic execution, a technique proven to be effective in finding software implementation flaws, can also be leveraged to expose noncompliance in X.509 implementations. Directly applying an off-the-shelf symbolic execution engine on SSL/TLS libraries is, however, not practical due to the problem of path explosion. To this end, we propose the use of SymCerts, which are X.509 certificate chains carefully constructed with a mixture of symbolic and concrete values. Utilizing SymCerts and some domain-specific optimizations, we symbolically execute the certificate chain validation code of each library and extract path constraints describing its accepting and rejecting certificate universes. These path constraints help us identify missing checks in different libraries. For exposing subtle but intricate noncompliance with X.509 standard, we cross-validate the constraints extracted from different libraries to find further implementation flaws. Our analysis of 9 small footprint X.509 implementations has uncovered 48 instances of noncompliance. Findings and suggestions provided by us have already been incorporated by developers into newer versions of their libraries.

About the Speaker

Sze Yiu Chau is a PhD student in the Department of Computer Science at Purdue University. His advisors are Prof. Aniket Kate and Prof. Ninghui Li. His research focuses on the reliability and robustness of the design and implementation of network protocols. Prior to joining Purdue, he received his bachelor's degree from The Hong Kong Polytechnic University in 2013.

Unless otherwise noted, the security seminar is held on Wednesdays at 4:30P.M. STEW G52, West Lafayette Campus. More information...

Disclaimer

The views, opinions and assumptions expressed in these videos are those of the presenter and do not necessarily reflect the official policy or position of CERIAS or Purdue University. All content included in these videos, are the property of Purdue University, the presenter and/or the presenter’s organization, and protected by U.S. and international copyright laws. The collection, arrangement and assembly of all content in these videos and on the hosting website exclusive property of Purdue University. You may not copy, reproduce, distribute, publish, display, perform, modify, create derivative works, transmit, or in any other way exploit any part of copyrighted material without permission from CERIAS, Purdue University.