Modeling Search in Group Decision Support Systems
Download
Author
J Rees, G Koehler
Tech report number
CERIAS TR 2004-118
Entry type
article
Abstract
Groups using group decision support systems (GDSS) to address particular tasks can be viewed as performing a search. Such tasks involve arriving at a solution or decision within the context of a complex search space, warranting the use of computerized
decision support tools. The type of search undertaken by the
groups appears to be a form of adaptive, rather than enumerative,
search. Recently, efforts have been made to incorporate this
adaptation into an analytical model of GDSS usage. One possible
method for incorporating adaptation into an analytical model is to
use an evolutionary algorithm, such as a genetic algorithm (GA), as
an analogy for the group problem-solving process. In this paper, a test is made to determine whether GDSS behaves similarly to a GA
process utilizing rank selection, uniform crossover, and uniform
mutation operators. A Markov model for GAs is used to make this
determination. Using GDSS experimental data, the best-fit transition
probabilities are estimated and various hypotheses regarding
the relation of GA parameters to GDSS functionality are proposed
and tested. Implications for researchers in both GAs and group decision support systems are discussed.
Download
Date
2004 – 08
Journal
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS
Key alpha
Rees
Number
3
Pages
237-244
Volume
34
Publication Date
2004-08-00

