The Center for Education and Research in Information Assurance and Security (CERIAS)

The Center for Education and Research in
Information Assurance and Security (CERIAS)

Empirical Evaluation of Secure Two-Party Computation Models

Download

Download PDF Document
PDF

Author

Marina Blanton

Tech report number

CERIAS TR 2005-58

Entry type

techreport

Abstract

Secure multi-party protocols make the computation of answers and decisions that depend on multiple parties' private data possible, without revealing anything about the private inputs (other than what unavoidably can be deduced from the outputs). There are general results showing that any probabilistic polynomial time function can be computed in this framework in an asymptotically efficient manner, using circuit-simulation techniques. There is a frequent belief that these general circuit-simulation techniques are not practical compared to custom-built (i.e., problem-specific) solutions, unless the function being computed has a naturally circuit-like formulation. This paper carries out a quantitative empirical evaluation of this belief, for a problem that would apparently benefit from a custom-built protocol (forecasting using time series techniques). Our findings are somewhat surprising in the following aspects. First, the custom-built solution does not overcome the general circuit-simulation solution on a local network until the problem size becomes quite large. Second, relaxing (even slightly) the requirement that, instead of ``nothing'', the protocols reveal ``little'' makes possible dramatic performance improvements over the solutions for the more strict requirement (whether they are custom-built or based on general circuit simulations). Third, other aspects (such as, e.g., system resources available) play a significant role in evaluation of a computational model. This paper describes the subtle implementation issues involved with this evaluation, presents its results, and talks about the lessons learned that should be valuable in future deployments of this kind of technology.

Download

PDF

Date

2005 – 05

Institution

Purdue University

Key alpha

blanton

Affiliation

Purdue University

Publication Date

2005-05-01

BibTex-formatted data

To refer to this entry, you may select and copy the text below and paste it into your BibTex document. Note that the text may not contain all macros that BibTex supports.