2022 Symposium Posters

Posters > 2022

Are My Deep Learning Systems Fair? An Empirical Study of Fixed Seed Training


Primary Investigator:
Lin Tan

Project Members
Shangshu Qian, Hung Viet Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, Sameena Shah
Deep learning (DL) systems have been gaining popularity in critical tasks such as credit evaluation and crime prediction. Such systems demand fairness. Recent work shows that DL software implementations introduce variance: identical DL training runs (i.e., identical network, data, configuration, software, and hardware) with a fixed seed produce different models. Such variance could make DL models and networks violate fairness compliance laws, resulting in negative social impact. In this paper, we conduct the first empirical study to quantify the impact of software implementation on the fairness and its variance of DL systems. Our study of 22 mitigation techniques and five baselines reveals up to 12.6