CERIAS

The Center for Education and Research in Information Assurance and Security

Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training

Shangshu Qian¹, Hung Viet Pham², Thibaud Lutellier², Zeou Hu², Jungwon Kim¹, Lin Tan¹, Yaoliang Yu², Jiahao Chen³, Sameena Shah³ ¹Purdue University ²University of Waterloo ³J.P. Morgan AI Research

Motivation: Deep learning (DL) training is non-deterministic even with a fixed random seed.

Rerun: 20.4%	Two runs with the same random seed, data, and hyperparameters		 2.5% bias difference is caused by DL software implementations (e.g., TensorFlow). Floating-point calculations are not associative.
Run: 17.9%			 DL software selects primitive operations at runtime.
Unfair	200/	· DI throchold	used in one U.S. legal case
Fair	20%	. Di tillesilolu	useu III Ulle U.S. legal Case .

			Bas	eline	Debiased				
Variance affects the evaluation of debiasing algorithms: debiasing algorithms increase bias amplification.		One ru	n	7.8%	6.1% Mor	e fair			
	Avg. (Avg. of 16 runs		7.4%	8.7% Less fair				
Motivation: Over 80% ^[1] of DL researchers and practit	tioners are u	naware	or unsure a	bout varian	ce in DL mod	el training!			
Q26 ^[1] - Do you expect fixed-seed identical DL training runs to be deterministic?									
Fixed-seed identical runs 63.4% Yes Maybe Mo 63.4% 20.4% $60%$ 8	16.2%	A va	riance analys	is on DL moo	dels' fairness is	needed!			
Approach: Fairness Variance Analysis	Finding: Soft	ware alo	one causes la	arge fairnes	s gap (up to 1	.2.6%)!			
Fixed-Seed Identical Training (FIT) Runs	echnique	Metric	MaxDiff (%)	Max (%)	Min (%)	Avg (%)			
Using the same	A-L2	DP	12.6	39.9	27.3	35.2			
 Random seed Train test split 	S-GR	DI	11.8	31.1	21.3	28.5			
Training data Hyperparameters Fi	i nding: Hidde	n cost c	of debiasing	includes hig	gher fairness v	variance.			
Normal I training I training I training I training I training I training	out one third (<mark></mark>	<mark>53</mark> /154)	154 b exper	ias mitigation iments	Increase f varian	airness ce (53)			

Statistical analysis (baseline VS debiased)

- Mann-Whitney U-test for mean value
- Levene's test for variance

of the bias mitigation experiments **increases** fairness variance compared with the corresponding baseline.

Finding: Most (15 out of 22) debiasing techniques increase at least one

We call for awareness of **implementation-level non-determinism**: **using proper statistical tests** to ensure the validity of deep learning experiments and more!

[1] Pham, Qian, Wang, Lutellier, Rosenthal, Tan, Yu, & Nagappan. Problems and opportunities in training deep

learning software systems: an analysis of variance. ASE 2020.

