2017 Symposium Posters

Posters > 2017

Statistical Learning Theory Approach for Data Classification with l-diversity


PDF

Primary Investigator:
Chris Clifton

Project Members
Chris Clifton and Koray Mancuhan
Abstract
Corporations are retaining ever-larger corpuses of personal data; the frequency or breaches and corresponding privacy impact have been rising accordingly. One way to mitigate this risk is through use of anonymized data, limiting the exposure of individual data to only where it is absolutely needed. This would seem particularly appropriate for data mining, where the goal is generalizable knowledge rather than data on specific individuals. In practice, corporate data miners often insist on original data, for fear that they might "miss something" with anonymized or differentially private approaches. This paper provides a theoretical justification for the use of anonymized data. Specially, we show that a support vector classifier trained on anatomized data satisfying l-diversity should be expected to do as well as on the original data. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values, thus satisfying l-diversity. The theoretical effectiveness of the proposed approach is validated using several publicly available datasets, showing that we outperform the state of the art for support vector classification using training data protected by k-anonymity, and are comparable to learning on the original data.