Provenance-based Data Trustworthiness Assessment in Data Streams
Page Content
Hyo-Sang Lim - Purdue University
Feb 17, 2010
Size: 379.8MB
Download:
MP4 Video
Watch in your Browser (Flash Required)
Abstract
This talk presents a systematic approach for estimating the trustworthiness of data items in data stream environments (such as sensor networks). The approach uses the data item provenance as well as their values. To obtain trust scores, the approach exploits a cyclic framework which well reflects the inter-dependency property: the trust scores of data items affect the trust scores of network nodes, and vice versa. The trust scores of data items are computed from their value similarity and provenance similarity. The value similarity comes from the principle that “the more similar values for the same event, the higher the trust scores,†and we compute it under the assumption of normal distribution. The provenance similarity is based on the principle that “the more different provenances with similar values, the higher the trust scores,†and we compute it using the tree similarity. Since new data items continuously arrive in DSMSs, we need to evolve (i.e., recompute) trust scores to reflect those new items. As evolution scheme, we propose the batch mode for computing scores (non)periodically along with the immediate mode. Experimental results show that the approach is efficient and effective in data stream environments.
About the Speaker
Hyo-Sang Lim is a post-doc in the department of computer science and CERIAS at Purdue University. He received his B.S. degree in computer science from Yousei University, South Korea and M.S. and Ph.D. degrees in computer science from KAIST (Korea Advanced Institute of Science and Technology). His research interests include query processing and security issues in data streams, sensor networks, and spatial databases.
Unless otherwise noted, the security seminar is held on Wednesdays at 4:30P.M.
STEW G52, West Lafayette Campus.
More information...
© 1999-2013 Purdue University. All rights reserved.
Use/Reuse Guidelines
CERIAS Seminar materials are intended for educational, non-commercial use only and any or all commercial use is prohibited. Any use must attribute "The CERIAS Seminar at Purdue University." Opinions expressed in the recordings are not necessarily representative of the views of CERIAS or of Purdue University.