The Center for Education and Research in Information Assurance and Security (CERIAS)

The Center for Education and Research in
Information Assurance and Security (CERIAS)

CAIN: Silently Breaking ASLR in the Cloud

Author

Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross

Entry type

inproceedings

Abstract

Modern systems rely on Address-Space Layout Randomization (ASLR) and Data Execution Prevention (DEP) to protect software against memory corruption vulnerabilities. The security of ASLR depends on randomizing regions in memory which can be broken by leaking addresses. While information leaks are common for client applications, server software has been hardened to reduce such information leaks. Memory deduplication is a common feature of Virtual Machine Monitors (VMMs) that reduces the memory footprint and increases the cost-effectiveness of virtual machines (VMs) running on the same host. Memory pages with the same content are merged into one read-only memory page. Writing to these pages is expensive due to page faults caused by the memory protection, and this cost can be used by an attacker as a side-channel to detect whether a page has been shared. Leveraging this memory side-channel, we craft an attack that leaks the address-space layouts of the neighboring VMs, and hence, defeats ASLR. Our proof-of-concept exploit, CAIN (Cross-VM ASL INtrospection) defeats ASLR of a 64-bit Windows Server 2012 victim VM in less than 5 hours (for 64-bit Linux victims the attack takes several days). Further, we show that CAIN reliably defeats ASLR, regardless of the number of victim VMs or the system load.

Date

2015 – 8 – 10

Booktitle

WOOT'15: 9th Usenix Workshop on Offensive Technologies

Key alpha

barresi

Publication Date

2015-08-10

BibTex-formatted data

To refer to this entry, you may select and copy the text below and paste it into your BibTex document. Note that the text may not contain all macros that BibTex supports.