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ABSTRACT 

Harris, Ryan M. M.S., Purdue University, May 2007.  Using Artificial Neural Networks 
for Forensic File Type Identification.  Major Professor:  Dr. Marcus K. Rogers. 

Current forensic software relies upon accurate identification of file types in order to 

determine which files contain potential evidence.  However, current type recognition 

mechanisms are susceptible to simple attacks that enable a criminal to confuse the 

detection algorithm.  This study investigated whether artificial neural networks were 

superior to existing mechanisms at responding to modern evidence tampering techniques 

and concluded that the tested neural networks were not better than the existing methods.  

However, the study yielded avenues for future investigation. 
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1   THE PROBLEM 

1.1 Introduction 

With the rapid development of computer technology, crime involving digital evidence 

is becoming more commonplace (Kruse & Heiser, 2002).  Digital forensics involves an 

investigation of digital evidence to enable investigators to determine the truth about what 

happened (Kruse & Heiser, 2002).  However, to achieve this goal, law enforcement must 

have tools and technologies that enable them to examine the evidence accurately.  

Unfortunately, as computer technology has advanced, criminals have found a myriad of 

ways to avoid law enforcement detection. 

The forensics community seems to be ill prepared for these anti-forensic techniques.  

In fact, most of the discussion about these methods is taking place outside the law 

enforcement community (Harris, 2006).  Since anti-forensics can be used to “. . . 

compromise the availability or usefulness of evidence to the forensics process” (Harris, 

2006, p. S45), it is imperative that investigators begin to develop techniques for 

responding to these threats.  

1.2 Statement of the Problem 

A child predator might attempt to hide an image by changing its extension to “.doc” 

so it appears to be a Microsoft Word document.  Some forensics software looks at a file’s 
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contents to determine what information it contains (Kruse & Heiser, 2002).  This allows 

investigators to detect the type of the contents even if the file extension has been 

changed.  However, the software currently detects images based on hard coded file 

signatures.  The first few bytes of the file are examined to determine what type of 

information the file contains (Foster & Liu, 2005).  This method of detecting file types 

works well in cases where the file has been otherwise unaltered; but it may fail when the 

file’s contents do not match the predetermined signatures.  

The signature-based method of detecting file types leaves the software susceptible to 

“evidence counterfeiting.”  Evidence counterfeiting manipulates existing evidence to hide 

its purpose or creates new evidence that is deceptive (Harris, 2006).  If a suspect alters 

any of the first few bytes of a file, the forensics packages are no longer able to detect 

what type of information is in the file (Foster & Liu, 2005).   

1.3 Significance of the Problem 

Even though files can be rendered undetectable to present forensics software, suspects 

are still able to open them normally.  This means that a suspect can alter files so they are 

not detected during a scan of the computer for incriminating images.  A suspect may go 

free simply because the investigative software used was unable to see the files. 

The implications for child exploitation investigations are scary.  The Internet has 

made it increasingly easy for sexual predators to traffic illicit images (Heimbach, 2002; 

Federal Bureau of Investigation, n.d.) and engage in other illicit acts (Hernandez, 2006).  

During the last ten years, child pornography cases have increased over 1750 percent 

(Federal Bureau of Investigation, n.d.).  One Internet trading group that the FBI 



3 

investigated had over 7,200 members (Heimbach, 2002).  If suspects can reliably hide 

files from forensic tools, many of these individuals may not be caught. 

1.4 Purpose of the Study 

The purpose of this research was to determine whether artificial neural networks 

could provide a more robust method of detecting file types than that provided by current 

signature based methods.  The expectation was that artificial neural networks’ ability to 

respond to changes in data would allow reliable detection of file types even if the 

contents had been subtly altered.  This research attempted to determine whether artificial 

neural networks provided an acceptable substitute for existing detection algorithms.  

During the process of pursuing the research goal, the research also attempted to identify 

which file types could be identified most accurately using neural networks. 

1.5 Delimations 

Because of the wide variety of files in use on modern computers, the research was 

unable to cover all file types comprehensively.  This thesis concentrated on files that 

could not yield useful information without being identified first.  This included files that 

store information only in a binary format such as images, executables and archives.  

Other file types such as spreadsheets and documents may store binary information, but 

the plain text is still available to any search algorithm used by the forensic software.  

Therefore, this study did not seek to identify file types that included plain text but instead 

concentrated on files whose contents could not be searched.  Specifically, this study only 
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included JPEG, GIF, TIFF, BMP and PNG image files since those files were widely 

available on the Internet and were commonly encountered during forensic investigation 

(Table 1). 

Signature analysis could occur in two forms in forensic investigation.  If a file’s 

extension has been changed, signatures might be used to determine the type of data the 

file contains.  Another use of signature identification is in file carving.  During file 

carving, a forensics program attempts to identify the start and end of files based on pre-

defined signatures (Richard & Roussev, 2005).  This technique is typically used to find 

deleted files.  While it was expected that this study's results might be useful for file 

carving, the investigation only centered on identifying files whose contents were known. 

1.6 Limitations 

The layout of files generated within different software packages may have varied 

slightly due to differences in interpretation of the format specifications.  Since it was 

impossible to obtain a complete sample of all the different variations of the file formats, 

Table 1 

Number of images of each type contributing to the testing and training sets 

File Type Training Set Testing Set 

JPEG 5000 500 

PNG 5000 500 

BMP 1000 100 

GIF 1000 100 

TIFF 1000 100 

TOTAL 13000 1300 
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this research employed opportunity based sampling to select images based on their 

availability rather than attempting to meet a specific statistical constraint.  Images were 

selected from a variety of image databases on the Internet.  The images in these databases 

may have been primarily furnished by photographers who used professional software and 

equipment.  As such, the training data may not have accurately represented image files 

that came from lower-end software or equipment.  This limitation may have affected the 

applicability of the generated neural networks to the community of image files at large.  

However, the file formats of the images are constrained by specifications, so the impact 

should have been minimal. 

Another limitation of this research involved the complexity of creating classification 

mechanisms.  General-purpose classification schemes are difficult to create (Duda, Hart, 

& Stork, 2001).  While the study yielded a general classification mechanism, the 

mechanism was not optimal for all of the file types.  Future studies would be necessary to 

determine whether individualized classification mechanisms are necessary for specific 

types of file.  For example, GIF files might need a separate input feature choice method 

than JPEG files to be detected in an optimal manner. 

1.7 Definitions 

The following definitions explain the usage of key terms used throughout this 

document. 

�  Activation function – An activation function is the function that determines the 

output value of a neuron in an artificial neural network based upon the weight 

assigned to the connections to that neuron (Duda, Hart, & Stork, 2001).  
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�  ANOVA – An ANOVA (analysis of variance) is a statistical test that attempts to 

determine whether there is a statistically significant difference between two or 

more data groups.  

�  Anti-forensics – “Any attempts to compromise the availability or usefulness of 

evidence to the forensics process” (Harris, 2006, p. S45). 

�  Artificial neural network – An artificial neural network uses a series of neurons to 

transform a set of inputs into a desired set of outputs (Bishop, 1995).   

�  Backpropagation – Backpropagation is the process by which an artificial neural 

network adjusts the weights assigned to the connections between neurons to bring 

the current output value of the neuron closer to the expected value (Duda, Hart, & 

Stork, 2001).  Backpropagation only occurs during neural network training. 

�  Clustering – Clustering is a technique for grouping similar data points together to 

aid in classifying the data (Duda, Hart, & Stork, 2001; Mena, 2003). 

�  Epoch – An epoch is one presentation of the complete training set to the neural 

network (Duda, Hart, & Stork, 2001). 

�  Error – Error is the difference between an expected neuron output value, and the 

actual output value. 

�  Error backpropagation – See backpropagation. 

�  Filesystem – A filesystem contains data which helps the computer locate and 

access files stored on the drive. 

�  File carving – File carving is a technique for extracting file contents from a disk 

by searching for signatures which identify the start and end of the file contents 

(Richard & Roussev, 2005). 
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�  Forensics - “The application of science to those criminal and civil laws which are 

enforced by police agencies in a criminal justice system”  (Saferstein, 1998, p. 4). 

�  Hidden layer – A hidden layer is a layer whose inputs and outputs are connected 

to other neurons (Duda, Hart, & Stork, 2001). 

�  Input layer – An input layer is made up of neurons whose inputs are the data that 

the network is expected to process (Duda, Hart, & Stork, 2001). 

�  Incremental training algorithm – An incremental training algorithm adjusts for 

differences between the actual output value and the expected output value after 

each sample in the training set is presented to the network rather than adjusting 

for the error at the end of each epoch (Fast Artificial Neural Network Library, 

n.d.). 

�  Layer – A layer is a group of nodes that all accept inputs from the same data set 

and output to the same data set.  There are three types of layers: input layers, 

hidden layers, and output layers (Duda, Hart, & Stork, 2001).  There are 

connections between the layers that have weights assigned to them to allow the 

network to adjust the actual output values so that they match with the desired 

output values (Duda, Hart, & Stork, 2001). 

�  Metadata – Metadata is data about other data.  In a filesystem, the filename, file 

size, date last accessed, etc. are all metadata; they are data about the file itself. 

�  Mean square error (MSE) – The mean of the squared differences between the 

expected and actual output values from neurons in a neural network. 

�  Neuron - A neuron takes one or more input values and transforms them using an 

activation function to produce an output value (Duda, Hart, & Stork, 2001). 
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�  Node – See neuron. 

�  Output layer – An output layer is a layer made up of neurons which output the end 

result of the network's processing (Duda, Hart, & Stork, 2001). 

�  Overfitting – Overfitting occurs when the neural network begins to approximate 

individual data samples in the training set rather than generalizing the pattern that 

these data values represented. 

�  Present – To present a sample is to supply it to the input layer of a neural network 

in order to determine what the output values of the neural network will be. 

�  Symmetric sigmoid –  A symmetric sigmoid function is a type of activation 

function that is smooth and non-linear (Duda, Hart, & Stork, 2001), ranging from 

-1 to 1 (Fast Artificial Neural Network Library, n.d.). 

�  Tanh – Tanh is an abbreviation for the function hyperbolic tangent.  This function 

is a member of the sigmoid class of functions (Duda, Hart, & Stork, 2001). 

�  Testing set – A testing set is a set of samples which are used to test how well the 

network has learned the training set.  Each sample in the testing set also includes 

the expected output value of the neural network so that it can be compared with 

the actual output value. 

�  Training – Training is the process by which a neural network “learns” patterns.  

Generally, data is presented to the neural network, and the actual output values 

are compared with the expected output values.  Any error is corrected through 

backpropagation (Duda, Hart, & Stork, 2001). 

�  Training set – A training set is a set of samples that are used to train the network.  

Each sample in the training set also includes the expected output value of the 
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neural network so that the network can be trained to output that value when 

presented with a similar input. 
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2   LITERATURE REVIEW 

2.1 Attempts to Evade Detection 

It is important to understand how anti-forensic methods may affect computer file 

systems since they store a variety of evidence that can be useful to an investigation.  In 

addition to file contents, file systems also store a wide range of metadata (Carrier, 2005) 

which is used to enhance usability.  The wealth of information provided by the file 

system may be extremely valuable to an analysis.  Without valid metadata, the forensic 

process can become extremely difficult to complete. 

Therefore, criminals have started using the anti-forensic techniques of counterfeiting 

and destruction (Harris, 2006) to manipulate the forensic process.  A criminal might 

choose to create counterfeit file system metadata to hide the true purpose of a file (Harris, 

2006; Foster & Liu, 2005).  For example, a criminal could choose to rename an image 

file so that it would appear to be a Microsoft Word document.  However, the actual 

contents of the file would still be an image.  Another technique that a criminal could use 

would be to destroy the file system metadata that points to the file.  This would make it 

difficult for the investigator to find and identify the file.  However, removing the file 

system information does not destroy the actual file contents (Carrier, 2005; Geiger, 2005; 

Mallery, 2001).  Therefore, if the file contents can be identified, they may become 

valuable evidence. 
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2.2 Counteracting Attempts to Evade Detection 

Forensic software vendors have recognized that criminals attempt to hide files by 

changing the file’s extension.  As a result, it was essential to identify files based on the 

actual data they contain rather than the names that they had been assigned.  As early as 

1973, the UNIX operating system provided the “file” command to enable people to 

identify files based on their contents (Darwin, 1999).  The command used a few bytes 

from the beginning of the file (referred to as the “magic”) to identify the file type 

(Darwin, 1999).  Forensics software borrowed this technique and current software 

attempts to identify files based on a brief series of bytes at the beginning of the files 

(Foster & Liu, 2005). 

File carving is another technique quite similar to file type identification that is used to 

recover deleted files.  When a file’s metadata has been destroyed, file carving attempts to 

find the original files by identifying their contents (Richard & Roussev, 2005).  File 

carving can be viewed as an extended type of signature based file identification. This is 

because the first few bytes of each sector are checked for a signature that identifies the 

start of a known file type (Richard & Roussev, 2005).   

2.3 Difficulties with File Type Identification 

One of the primary difficulties with identifying data based on a known signature is 

that the signature must be static.  If a signature is not picked correctly, it may fail to 

identify files consistently.  In some cases, a signature may result in false positive values 

when it is not sufficiently restrictive.  For example, Foster and Liu (2005) detailed how 

some forensic software can misidentify text files as executables if the first two bytes in 
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the file are “MZ.”  However, this is not the only difficulty.  If a signature is too 

restrictive, it may result in files not being identified as they should be.  Forensic software 

may fail to identify JPEG images if the second two bytes are changed, even though these 

two bytes are not significant in identifying an image as a JPEG (Harris, 2006). 

Since file carving is a special type of file identification, it has similar problems to 

those encountered by standard file identification.  The first activity of a carving tool is 

identifying the start of files using a signature detection algorithm (Richard & Roussev, 

2005).  However, even if we assume that the signature used for determining where the 

file starts is completely correct, there are still several difficulties with this approach.  

After a carving tool has identified the start of a file, it will scan in a similar manner for a 

signature that identifies the end of the file (Richard & Roussev, 2005).  The signatures 

that identify the end of the file may not fall on an even 512-byte boundary.  Therefore, a 

file carving tool must be even more carefully created to avoid falsely detecting the end of 

a file.    

After an end signature is found, the tool then assumes that the bytes between the start 

and end signatures belong to a single file.  However, file systems can become fragmented 

so the data stored in-between the start marker and end marker could be from different 

files.  File fragmentation occurs frequently during normal computer use (Kinsella, 2006), 

so fragmentation can be expected to be a norm on most file systems.  Therefore, there is a 

high likelihood that files will be incorrectly identified if the software is unable to detect 

whether the in-between sectors have come from a similar file type. 
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2.4 A Possible Approach 

Usable files must have a standardized enough format that a program is able to parse 

the data they contain and use it.  Logically then, all usable files must have some sort of 

format or pattern to the data that they contain.  Since each usable file type must have a 

pattern, if this pattern can be discerned and expressed uniquely from other file types, then 

a file can be identified by the pattern of the data it contains.  Therefore, file type 

identification may not need to be a search for a specific hard-coded byte-sequence.  An 

algorithm could simply search for an identifiable pattern to determine what type of data a 

file contains. 

A file may contain mostly random information with little organized structure.  

Therefore, one difficulty with this method is that a pattern might be hard to recognize 

through the noise of the file’s data.  Neural netwo rks may provide a solution since they 

can learn patterns that are difficult to discern (Mena, 2003).   

Neural networks offer a couple of advantages for pattern recognition.  First, they are 

extremely effective at recognizing patterns (Mena, 2003).  This is a distinct advantage 

when processing large volumes of training data where the actual underlying pattern is 

unknown (Mena, 2003).  Having a human search for discernible patterns may take quite a 

while, yet a neural network may be able to pick out the pattern easily. 

Another advantage of neural networks is the speed with which they operate once they 

have been trained (Mena, 2003).  Speed is an essential factor in a forensic investigation 

where almost every file on a drive will need to be identified and classified.  As hard drive 

size increases, the number of files that can be stored on the drive increases as well.  An 
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algorithm that takes too much time to classify each file would not be useful to an 

investigation. 

2.5 Neural Networks for Pattern Recognition 

Neural networks are a well-established field. Initial research into neural networks 

started over 50 years ago (Mena, 2003).  Extensive research has investigated using neural 

networks in pattern recognition tasks (Bishop, 1995).  This research was based on the 

premise that the best framework for assessing patterns is that which is provided by 

statistics (Bishop, 1995). 

Neural networks have been designed to solve a variety of pattern related problems 

including forecasting, clustering, classifying and generalizing (Mena, 2003).  Prediction 

uses neural networks to determine future events based on history (Mena, 2003).  While 

this might be useful in some branches of forensics, it appears to have little usefulness for 

analyzing file types. 

Clustering attempts to group data according to similarities (Mena, 2003) which allows 

the researcher to find related data points.  For file type identification, clustering could be 

useful to determine which features of a specific file type are most useful in creating a 

classification scheme.  For example, a clustering algorithm could identify bytes within 

JPEG files that normally are identical. 

Classification attempts to identify data as either inside or outside a set (Mena, 2003).  

Classification seems to be useful approach for a system that identifies file types.  An 

algorithm might classify a file as belonging to a specific type of file as either a GIF or not 

a GIF image.  However, this is not the goal of robust file type identification.  A signature-
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based system is quite capable at identifying and classifying files based on specific 

attributes. 

The most useful aspect of neural networks appears to be the ability to generalize data.  

Generalization attempts to recognize a pattern between cases (Bishop, 1995; Mena, 

2003).  When identifying file types, the algorithm must be powerful enough to enable it 

to identify files that have not been seen before.  Neural networks might generalize file 

patterns enough to identify file types even when the file has been altered. 

2.6 Capabilities and Limitations 

Neural networks appear to have distinct advantages when used for file type 

identification.  However, there are several significant limitations.  Neural networks are 

vastly misunderstood in common literature (Bishop, 1995).  As a result, neural networks 

may receive undue attention as a complete solution to every pattern recognition problem.  

Any investigation using neural networks cannot assume that they are the ideal solution. 

One of the primary difficulties with neural networks is determining how much 

information must be provided at the inputs (Bishop, 1995).  Intuitively, it would seem 

that the more information that is provided to the network, the better the matching 

capability.  Nevertheless, this is not the case.  Large numbers of input values actually 

may adversely affect the capability of the recognition system (Bishop, 1995).  This 

occurs because the number of training data points must increase with the number of input 

nodes into the neural network (Bishop, 1995). 

Another difficulty with neural networks is determining how many hidden layer nodes 

are necessary to represent the data accurately.  Adding more hidden neurons may more 
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accurately represent the data when the input data values are tightly related (Duda, Hart, & 

Stork, 2001).  However, adding too many hidden layer inputs provides little value (Liang, 

Moskowitz, & Yih, 1992).  Duda, Hart and Stork (2001) acknowledge that there “is no 

foolproof method for setting the number of hidden units before training” (p. 310).  So, the 

only way to correctly determine the best number of hidden layer nodes is through 

experimentation. 
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3   PROCEDURES AND METHODS 

3.1 Sample Selection 

To gather an appropriately large sample, it was necessary to rely on opportunity-

based sampling.  Stratification by image type was used to increase the likelihood that 

each type of image was adequately represented in the training and testing sets.  Table 1 

indicates the number of images of each type that were assigned to the testing and training 

sets.   

From the beginning, it was understood that file formats may have differed slightly 

from package to package (for example, a JPEG created in Adobe Photoshop will differ 

from one created by a Canon camera).  So, the file sources were chosen with the hope of 

reducing this bias.  The files were selected from several different Internet file 

repositories.  Repositories that contained images from many different sources were 

favored over ones that contained images from a single source.  This was done to reduce 

the likelihood that the image file formats in the repository would be identical.  For 

example, Flickr was assumed to have more variety in its images than a stock photography 

site would have.  This assumption was based on the fact that a stock photography site 

might use images from a small group of photographers. 

In addition to controlling the repository selection, each image type was selected from 

more than one repository.  Again, this was done to reduce the likelihood that all the 
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images were passed through the same image processing algorithms.  Table 2 provides a 

summary of the repositories from which images were selected for possible inclusion in 

the testing or training sets and how many images of each type were selected from that 

source.  The images selected from each source had an equal likelihood of being included 

in either the testing or training set.  However, once an image had been included in one of 

the sets, it was no longer eligible for inclusion in the second set. 

The samples for the experiment were stratified by file type.  This was done to ensure 

that all the file types that were to be trained on the system were adequately represented.  

As shown in Table 2, in some cases the samples were removed from consideration for 

training and testing.  These samples were removed as a double stratification measure to 

ensure that one size or shape of image was not over-represented.  Thumbnails were 

eliminated since they may have biased the sample toward images of that size and shape. 

 

Table 2 

Image sources by file type 

JPEG PNG BMP GIF TIFF 
Source D U D U D U D U D U Total 

usenet-
replayer.com 620 611 1090 1082 1121 1103 1553 1538 734 734 5068 
wpclipart.com 0 0 15189 15189 0 0 0 0 0 0 15189 
flickr.com 23191 9038 95 95 0 0 161 161 0 0 9294 
cs.sfu.ca* 0 0 0 0 0 0 0 0 223 223 223 
nps.gov 0 0 0 0 0 0 0 0 31 31 31 
sipi.usc.edu* 0 0 0 0 0 0 0 0 215 215 215 
TOTAL 23811 9649 16374 16366 1121 1103 1714 1699 1203 1203  
 
D Number of images downloaded 
U Number of images that were considered for the testing or training sets 
* Test image archives 
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During the initial run of the data for this investigation, it became obvious that it was 

necessary to impose further controls on the samples.  The results of the partial data run 

showed that the size of the individual files was biasing training results.  File types that 

tended to be larger (such as a TIFF image) were being learned disproportionately to the 

other file types.  This phenomenon occurred because the larger files supplied more 

training data to the network.  To eliminate this bias, the experiment was stopped and a 

file size control was added before the experiment was restarted.  This control was 

designed to reduce the bias caused by the file size differences and better represent each 

file type.  The file size control specified that only the first five kilobytes (first 10 blocks) 

of each file would be fed to the networks for training and testing.  The 10 block limit was 

chosen since most of the files were at least 5 kilobytes in size.   

3.2 Software and Hardware 

The neural networks for the experiment were constructed and tested using the Fast 

Artificial Neural Network library (or FANN).  The FANN library was picked because it 

provided a flexible design that met the requirements of the project.  It was necessary to 

use a beta version (version 2.1.0 beta) of FANN since the release version at the time of 

the experiment was known to have issues in some configurations.  The FANN graphical 

interface was used for the neural network design and much of the testing.  Command line 

interfaces were used for the training and the remainder of the testing to enable logging 

results more easily. 

The FANN library was used in floating point mode.  The smallest network used in 

this experiment had over 250 nodes and ten times as many connections between the 
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layers.  This meant that over two thousand floating-point calculations were required for 

each training or testing record.  Since training required processing many times more 

records than testing, the neural networks were trained on four separate desktop computer 

systems.  Since the testing did not require as much processor activity, it was completed 

on a single laptop.  Table 3 summarizes the configuration of each of the training and 

testing systems.   

 

3.3 Neural Network Construction 

Two feature extraction methods were used: raw filtering and character code 

frequency.  For both methods, the file was divided into blocks of 512 bytes.  As noted in 

prior sections, only the first 10 blocks of each file were processed.  Raw filtering 

essentially took each byte from a block in the input file and supplied it as an input into 

one neuron of the neural network.  It was assumed that this technique would be most 

Table 3 

Configuration of training and testing hardware 

System Chassis Processor RAM HD Usage 

blackbeast Desktop Athlon64 2800 2.0 750.0 Training 
Character Frequency (10) 

slimjim Desktop Sempron 2800 1.0 60.0 Training 
Character Frequency (20) 

mythtv Desktop Athlon64 3200 1.0 120.0 Training 
Character Frequency (30) 

newhorizon Desktop Pentium D 820 1.0 250.0 Training 
Raw (10, 20, 30) 

graydawn Laptop Pentium M 1.6GHz 1.5 80.0 Testing 
All 
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useful for files that had regularly spaced data structures (for example 64 bytes for each 

data structure) since the patterns would occur at regular intervals. 

Character code frequency filtering was borrowed from the cryptographic community.  

The inputs to the character frequency filtered neural networks were comprised of the 

number of times each character code was used in each of the blocks in the file to be 

identified.  This technique was assumed most useful for files that had non-regularly 

spaced file structures that were started with uniform identifiers. 

There were many possible methods of constructing the networks and it was difficult 

to determine which layout would be most appropriate for this research.  Consequently, 

the research examined several different node counts at each juncture to determine their 

effectiveness.  The research used neural networks with two different input node counts.  

Networks that were created for use with raw input filtering had 512 input nodes and the 

character-code frequency networks had 256 input nodes.  There were significant amounts 

of random data fed to the networks because of the number of nodes present at the input 

layer.  Theoretically, determining optimal input clusters would create better results.  

However, this trade-off was picked in the interest of creating a general network structure 

that would be useful on a wide variety of files.   

There was only a single hidden layer in the neural networks.  This hidden layer had 

nodes numbering ten, twenty or thirty.  The hidden node count was limited to no more 

than thirty because it was expected that there would be a point at which additional hidden 

nodes would provide no additional benefit.  This expectation was based on a phenomenon 

mentioned by Liang, Moskowitz, and Yih (1992), where extra hidden layer nodes 

increase computational complexity without providing substantial value.  Output node 
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count was held constant at five to allow for representing the types of input files as a bit 

sequence. 

Duda, Hart and Stork (2001) mentioned that a linear activation function would 

effectively negate the benefits of a tri-layer network.  For this reason, the activation 

functions were set to hyperbolic tangent (tanh) for all the networks.  These functions 

were selected since they were the most accurate available in the library of supported 

functions (Fast Artificial Neural Network Library, n.d.). 

In artificial neural networks, the error encountered during each iteration is used to 

adjust the weights of the individual neurons in the network.  This adjustment is referred 

to as backpropagation (Ripley, 1996).  In this research, the error was adjusted using tanh 

which is generally more effective than a standard linear error function (Fast Artificial 

Neural Network Library, n.d.).   

Based on Duda, Hart and Stork’s (2001) suggestions,  the network learning rate was 

set to 0.1 anticipating that a small value would reduce the variability during the training 

and would also reduce the likelihood of consistently overshooting the correct connection 

weight.  Although the software allowed for more advanced training methods, the author 

chose to use the incremental error backpropagation algorithm.  This decision was made to 

increase the likelihood of usable results since the other available algorithms are only 

useful under specific circumstances (Fast Artificial Neural Network Library, n.d.). 

3.4 Inputs and Outputs 

As mentioned earlier, a variable number of input nodes were fed through a hidden 

layer into a fixed number of output nodes.  The input nodes were fed using n consecutive 
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bytes from the file being identified or from the character frequency table (where n was 

the number of input nodes in the neural network).  Because of software limitations and 

general neural network limitations, the bytes were processed before being submitted at 

the artificial neural network input nodes.  During preliminary testing, it was found that 

the software only allowed decimal values to be provided for inputs and outputs, so the 

input byte-codes were divided by one thousand to accommodate this limitation.  

Additionally, the input values were mathematically shifted to center around zero with 

byte-code 128 being the center.  This was done to ensure that null values in the files 

(byte-code 0) would not adversely affect the output node values. 

The output node values were treated like bits in a byte with a positive 0.9 indicating 

“on” and a negative 0.9 indicating “off.”  This range was chosen to reduce the likelihood 

of falsely classifying a file that was subtly altered.  While +/-0.9 was the intended output 

value, any output greater than either 0.5 or less than -0.5 was assumed to be on or off 

respectively.  This was in-line with Duda, Hart and Stork’s (2001) recommendations that 

the chosen output values should be less than the saturation point of the output nodes since 

Table 4 

Expected output node value by image type 

Type Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 

JPEG On Off Off Off Off 

PNG Off Off On Off Off 

BMP Off Off Off Off On 

GIF Off Off Off On Off 

TIFF Off On Off Off Off 
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the neural network outputs nodes might never reach the saturation point.  Table 4 

summarizes the bit values that were assigned to each file type. 

3.5 Training the Networks 

Before training, the neural network node weights were initialized to random values 

between 0.1 and -0.1.  These minimum and maximum values were chosen to ensure that 

the nodes were not initialized to large values.  According to Ripley (1996), large initial 

weights could have caused the output node values to be saturated at the outset (too close 

to zero or one). 

There were two training data sets.  Both sets were constructed using the same input 

samples; the only difference between the sets was in the filtering mechanism.  The first 

data set consisted of the training samples filtered through the raw filtering mechanism.  

The second data set consisted of training samples that were processed with the character 

frequency filter.  As noted earlier, due to a change in experimental protocol, only the first 

10 blocks of 512 bytes each were taken from each file, and then filtered and processed for 

the training sets. 

The neural network software allowed for both a variable number of training iterations 

and a fixed limitation (Fast Artificial Neural Network Library, n.d.).  The variable limit 

used the mean square error (MSE) between the expected output neuron values and the 

actual output neuron values for that iteration (Fast Artificial Neural Network Library, 

n.d.).  In this research, the variable limit was set to a MSE of 0.001 and the fixed limit 

was set to 20,000 iterations.  If either limit were encountered, the training would stop.  

The variable limitation was designed to help prevent the neural network from being 
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overfitted.  An overfitted network effectively memorizes the individual data points in the 

training set rather than recognizing the overall pattern (Ripley, 1996). 
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4   RESULTS 

4.1 Network Training Iterations 

As was detailed in Chapter 3, the training was set to stop automatically after 20,000 

rounds or an MSE of 0.001 was reached.  This double stopping condition was designed to 

provide protection against overfitting.  However, the chosen MSE of 0.001 was not 

reached by any of the networks before they had completed the 20,000 epochs.  Since all 

of the networks reached 20,000 epochs, it was impossible to use the number of epochs as 

a predictor of how effectively a given network configuration was able to learn the 

training data. 

4.2 Ending Training MSE and Input Node Count 

Table 5 provides a summary of the ending MSE of each of the network 

configurations.  Figure 1 provides a graphical summary of the same data.  As can be seen 

from the graph, on average, the raw input network configurations exhibited a much 

higher error than that shown by the character frequency code filtering network 

configurations.  A two-tailed two way ANOVA was done to assess whether the number 

of nodes in each layer had an effect on the MSE of the networks at completion (Table 6).  

The number of input nodes resulted in an F(1, 5) = 79.4, p = 0.012.  This indicated that 
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the number of input nodes had a significant impact on input node configuration and the 

end of training MSE. 

 

4.3 Ending Training MSE and Hidden Node Count 

Table 5 also provides a summary of the ending MSE based on the number of hidden 

nodes.  As can be seen from Figure 1, as the number of hidden nodes increased, the 

Table 5 

Ending mean square error (MSE) from training 

Hidden Node Count 
Input Filtering 10 20 30 Mean 

Character Frequency 0.26 0.22 0.21 0.23 

Raw 0.39 0.35 0.30 0.35 

Mean 0.33 0.28 0.26  
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Figure 1 

End of training mean square error (MSE) 
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overall MSE decreased.  In a two-tailed two way ANOVA, the number of hidden nodes 

resulted in an F(2, 5) = 10.1, p = 0.090 (Table 6).  At an alpha of 0.05, there was no 

significant relationship between the number of hidden nodes and the end of training 

MSE.  Normally, one would expect that the number of hidden layer nodes would have a 

significant impact on the accuracy of the network (Duda, Hart, & Stork, 2001) and would 

therefore affect the ending MSE. 

 

4.4 File Detection Anomaly 

A possible anomaly in file type detection was detected when compiling the study 

results.  According to FTK, around one percent of the files were misclassified during the 

training and testing of the networks.  This explained why the percentage of unaltered files 

detected by FTK was less than 100%.  The possibility of such an error was accepted for 

several reasons.  First, this issue was found to affect less than one percent of the training 

samples overall and affected no one file type more than 2.1%.  This amount was 

considered small enough that it would not decrease the learning capability of the network.  

Additionally, in many cases the files were downloaded based on specific file type 

information provided by the source of the files.  For example, the bitmaps that were 

Table 6 

Multiple analysis of variance for node count and training MSE 

Source df F � p 
Input Node Count 1 79.38 18.51 0.01* 
Hidden Node Count 2 10.06 19.00 0.09* 
Error 2   
* p < 0.05 
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downloaded from usenet-replayer.com were all classified as “image/bmp” by the site's 

internal recognition algorithm. 

4.5 Unaltered File Detection Performance 

The neural networks were assessed to determine their effectiveness at detecting 

unaltered files.  A file was detected properly if the average of the output bits for the file's 

blocks were in the appropriate range for that file type.  This detection rate was compared 

against that of Access Data’s Forensic Toolkit (FTK ) Version 1.7 to determine the 

viability of neural networks in this configuration.  Table 7 provides a summary of how 

well the networks detected unaltered samples of each of the file types and baselines the 

detection rate against that of FTK.  

 

As with the end of training MSE, in almost every case, the raw input filtering 

networks performed more poorly than the character code frequency networks.  Overall, 

the performance of the networks was not very good.  None of the networks achieved a 

Table 7 

Detection rates for unaltered test files 

 Hidden JPG PNG TIF GIF BMP 
10 6.2% 7.2% 36.0% 2.0% 17.0% 
20 7.6% 8.6% 37.0% 9.0% 20.0% Raw filtering 
30 10.6% 12.8% 50.0% 1.0% 29.0% 
10 16.0% 35.8% 49.0% 0.0% 31.0% 
20 50.2% 43.8% 57.0% 0.0% 41.0% Character code filtering 
30 42.6% 46.6% 60.0% 0.0% 37.0% 

FTK  99.0% 100.0% 99.0% 100.0% 99.0% 
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mean file detection rate above 50%.  The best performance occurred with TIFF files.  On 

average, the recognition rate for TIFF images was almost 15% above the recognition rate 

of any other file type.  The worst performing file type was GIF.  The GIF image detection 

rate was several orders of magnitude lower than any of the other file types.  Even the best 

performing network had no more than a ten percent success rate at detecting GIF images. 

The results for character code frequency networks seemed to be affected differently 

by the hidden node count than the raw filtering networks.  For these networks, once the 

hidden node count hit thirty, the performance actually declined.  Therefore, it would seem 

that an increase in the number of hidden nodes might not have increased the performance 

of the network.  This idea was also supported by the results seen in Figure 1.  Once the 

neural network hidden node count reached thirty, the training MSE leveled off.  

Therefore, an increase in the number of hidden nodes for character code frequency 

networks might not have provided a boost in neural network performance. 
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Figure 2 

Percent of character code filtered files detected by type (unaltered files) 
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When the detection rate for each of the network types was compared based on file 

type (Figures 2 and 3), a completely different picture emerged.  As hidden neuron count 

increased, some of the file types appeared to have increasing detection rates.  However, 

this general trend was not the same for every file type.  Figure 2 shows that the JPEG and 

BMP accuracy decreased for the character code frequency network with 30 hidden nodes.  

As could be seen in Figure 3, GIF image accuracy declined for the raw filtering network 

with 30 hidden nodes. 

 

4.6 Altered File Detection Performance 

Table 8 details the performance of the neural networks when files were altered.  

Figures 4 and 5 provide a graphical summary of the same data.  For most file types, the 

performance decreased.  This can be seen in the difference between the detection 
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Figure 3 

Percent of raw filtered files detected by type (unaltered files) 
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percentage from Tables 7 and 8.  The difference in detection rate was no more than 10% 

for the raw filtering networks and no more than 8% for the character frequency networks.   

 

Table 8 

Detection rates for altered test files 

 Hidden JPG PNG TIFF GIF BMP 
10 5.2% 7.4% 28.0% 1.0% 17.0% 
20 2.8% 8.0% 32.0% 9.0% 21.0% Raw filtering 
30 4.4% 11.8% 40.0% 1.0% 27.0% 
10 14.4% 35.6% 47.0% 0.0% 37.0% 
20 50.8% 42.8% 57.0% 0.0% 48.0% 

Character code 
filtering 

30 41.8% 45.6% 61.0% 0.0% 45.0% 
FTK  98.0% 98.2% 99.0% 100.0% 91.0% 
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Figure 4 

Percent of character code frequency filtered files detected by type (altered files) 
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4.7 Test File MSE and Node Count 

Tables 9 and 10 detail the testing MSE that resulted from each of the network 

configurations.  Table 9 summarizes the MSE for unaltered files; Figure 6 provides a 

graphical summary of the same data.  The MSE for altered files is slightly higher and is 

detailed in Table 10 and Figure 7. 
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Figure 5 

Percent of raw filtered files detected by type (altered files) 

Table 9 

Mean square error (MSE) from unaltered file test 

Hidden Node Count 
Input Filtering 

10 20 30 
Mean 

Character Frequency 0.29 0.24 0.24 0.26 

Raw 0.46 0.57 0.66 0.56 

Mean 0.37 0.40 0.45  
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 A two-tailed two factor ANOVA was performed on the unaltered test file MSE data 

to assess whether the number of nodes in each layer had an effect on the MSE of the 

networks at completion.  The number of input nodes resulted in an F(1, 5) = 17.5, p = 

0.05.  At an alpha level of 0.05, there was a significant relationship between the input 

node count and the unaltered test file MSE.  The number of hidden nodes resulted in an 

Table 10 

Mean square error (MSE) from altered file test 

Hidden Node Count 
Input Filtering 

10 20 30 
Mean 

Character Frequency 0.29 0.24 0.25 0.26 

Raw 0.46 0.58 0.67 0.57 

Mean 0.38 0.41 0.46  
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Figure 6  

Unaltered file test mean square error (MSE) 
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F(2, 5) = 0.40, p = 0.72 (Table 11).  At an alpha level of 0.05, there was no significant 

relationship between the hidden node count and the unaltered test file MSE.   

A two factor ANOVA was also performed on the altered test file MSE data to assess 

whether the number of nodes in each layer had an effect (Table 12).  The number of input 

nodes resulted in an F-ratio of F(1, 5) = 17.03, p = 0.05.  At an alpha level of 0.05, there 

was a significant relationship between the input node count and the unaltered test file 

MSE.  The number of hidden nodes resulted in an F(2, 5) = 0.42, p = 0.71.  At an alpha 

level of 0.05, there was no significant relationship between the hidden node count and the 

unaltered test file MSE.   
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Altered file test mean square error (MSE) 
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Table 11 

Two way analysis of variance for node count and unaltered file MSE 

Source df F � p 

Input Node Count 1 17.53 18.51 0.05* 

Hidden Node Count 2 0.40 19.00 0.72* 

Error 2    
* p < 0.05 

 
 
 
Table 12 

Two way analysis of variance for node count and altered file MSE 

Source df F � p 

Input Node Count 1 17.03 18.51 0.05* 

Hidden Node Count 2 0.42 19.00 0.71* 

Error 2    
* p < 0.05 
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5   DISCUSSION 

5.1 Number of Training Iterations 

Why all the networks ran for the full 20,000 training epochs is not readily apparent.  

There were four viable explanations.  One could argue that the number of iterations might 

not have been sufficient.  Increasing the number of training epochs might have increased 

the likelihood of reaching a lower training MSE.  However, this solution is not as 

straightforward as it would seem.  The appendix shows the relationship between training 

epochs and mean square error.  As can be seen in the graphs, each of the networks 

reached a point where the training mean square error (MSE) started to decrease at almost 

infinitesimal rates.  Therefore, without further experimentation it would be very difficult 

to determine whether a change in the number of epochs could have caused the neural 

networks to reach an MSE of 0.001. 

A second explanation could be that an MSE of 0.001 was too low of a stopping 

condition.  In retrospect, this argument would seem to carry some weight.  However, in 

this case it would be difficult to determine what a better stopping MSE would be.  As can 

be seen from the graphs, none of the networks ended training at exactly the same MSE.  

The networks using raw input filtering did not reach as low of an error as the networks 

using counted input filtering.  So, if one were to pick an MSE such as 0.2, the raw input 

networks would still have completed the maximum epochs.  If a higher MSE such as 0.3 
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was picked, one could argue that the character frequency input networks were not 

adequately trained.  Therefore, determining a proper stopping MSE retroactively would 

still be fraught with difficulty. 

Another possible explanation for the number of epochs would be to say that the 

neural networks were incapable of correctly approximating the data.  One could argue 

that there were not enough training entries, the network design was inadequate, or the 

data was too random for the network to learn.  Arguing that there were insufficient 

training entries appears to be incorrect since there were over 130,000 records in the 

training set.  Simply saying that the network configuration was inadequate would neglect 

the possibility that the data was too random for any network configuration to reach an 

MSE of 0.001.  Alternatively, blaming the data randomness neglects the possibility of 

better network designs.  So, assessing how these two variables related to the ending MSE 

would be difficult and would require a new experiment design.    

The final possible explanation is that there should have been an additional stopping 

condition to prevent overfitting.  Duda, Hart and Stork (2001) suggest separating out a 

portion of the training set to validate the network concurrently with the training.  

According to these authors, overfitting would be detectable by looking at a graph of the 

validation set's MSE across rounds.  For example, the network would be trained for five 

epochs, and then it would be tested against the validation set to determine whether 

overfitting was occurring.  The training would be stopped if a graph of the MSE across 

epochs showed an increase (rather than the expected decrease).  It would be assumed that 

the rise in error was caused by the neural network memorizing the training data points 

rather than generalizing them.  At face value, this type of stopping condition would sound 
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like a good solution.  However, this type of stopping condition may be illegitimate.  

According to Ripley (1996), frequently “...after an initial drop the error on the validation 

set rises slowly...then falls dramatically to a small fraction of the previous minimum” (pp. 

154-155).  Therefore, this type of stopping condition could have accidentally stopped 

training when the neural network has not finished learning. 

5.2 Input Node Count and Filtering Method 

  According to the ANOVA, there was a significant relationship between the ending 

MSE and input node count.  This result was not surprising given the significant gap 

between the ending MSE of the two different network input configurations (Figure 1).  

From this data, we can conclude that the input configuration of the networks must have 

had an effect on the ability of the network to be trained.  The networks that had 256 input 

nodes had statistically higher training performance and were more capable of 

approximating the training data presented to them.   

This result did imply that the character frequency networks had better learning 

performance.  However, it did not signify that the difference was completely caused by 

the actual filtering method used to provide the data.   The degree of relationship between 

ending MSE and input filtering method could not easily be separated from that caused by 

the actual number of input nodes.  The significance in the relationship may have simply 

come from the number of input nodes in the networks.  Based on purely anecdotal 

evidence, some of the significance may have been from the difference in filtering 

method.  The training files were compressed when they were moved between computers.  

The character frequency filtering files were compressed two times more efficiently.  
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Compression works by removing repeated patterns.  It appears that character frequency 

filtering had more discernible patterns.  However, further testing would be needed to 

assert definitively that the relationship completely stems from the input filtering method. 

It seems that at least one of the file types (GIF) benefited from a different input 

filtering method than the other types of files.  From anecdotal evidence, it appeared that a 

fair amount of the performance difference was related to the filtering method.  But, it is 

common knowledge in the neural network community that input node count has a 

performance impact.  As a result, it was impossible to quantify how much of the 

performance of the networks was related to the input node count and how much was 

related to the actual filtering mechanism chosen. 

5.3 Hidden Node Count 

The hidden node count in the neural networks seemed to have no statistically 

significant effect on the overall performance of the networks.  This phenomenon could 

possibly be explained by saying that the neural networks had an incorrect number of 

hidden nodes or layers.  If the number of hidden nodes were several orders of magnitude 

too low or too high, the networks would all be unable to adequately represent the training 

data.  In this type of situation, one might conclude that the error between the networks 

was relatively minor since none of the networks were successful at approximating the 

data.   In this case, it appears that the number of hidden nodes or layers may have been 

too small.  This assessment was based on the general direction of the MSE as shown in 

Figure 1.  However, it would be incorrect to assert that this was the case given the fact 

that the ANOVA found no significance. 
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However, as noted earlier, there were several possible reasons for this result.  First, 

one could argue that the networks were not trained sufficiently.  Another argument would 

state that the number of nodes in the neural network was dramatically above or below the 

number that were actually needed.  Another likely explanation is that the different file 

types responded differently to the hidden layer nodes.  Some file types benefited from 

additional nodes, while others were not benefited by these nodes.  Figures 2 through 5 

seem to indicate that this problem may have occurred. 

5.4 File Detection Rates 

TIFF images were detected most effectively out of all the file types.  This 

effectiveness could be attributed to the ability of the data to be classified by the neural 

network.  TIFF file types would appear to have data that could be recognized consistently 

by the neural networks.  The patterns in these types of files would appear to be more 

consistent.  One caveat with this assessment should be noted.  As can be seen from Table 

2, some of the TIFF images were drawn from test image archives.  If the images in these 

archives had a more consistent layout than the images from other sources, then this could 

have introduced a bias toward TIFF images.  However, as noted in Table 1, TIFF images 

were less represented than either JPEG or PNG images.  Therefore, one would expect that 

any problems introduced by using these image sources would have been minimized by 

the reduced number of total samples used during training. 

GIF images were detected correctly the least out of all the file types.  This could be 

the result of GIF images containing more apparently random information than the other 

file types.  The GIF images caused a negative skew in the mean detection rate for the 
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character frequency networks.  In the raw filtered networks, the negative effect of the GIF 

files was balanced by the TIFF detection rate.  This effect could be seen in the difference 

between the mean (biased estimator) and median (unbiased estimator) as shown in Table 

8.  It should also be noted that GIF images were the only type of image whose actual 

detection rate was higher with the raw input filtering networks.  This lends some 

credence to the initial supposition that different filtering methods would be better for 

different types of files. 

None of the file types were correctly detected more than 60% of the time.   However, 

this is not to imply that the neural networks were incapable of detecting file types.   Since 

there were five different file types to be detected, the random chance detection would be 

no higher than 20%.  Therefore, we could assume that neural networks were more 

successful than random chance at detecting the file types.    

There were several possible explanations for the poor performance of the networks.  

First, as noted in prior sections, one could argue that the neural network hidden node 

configuration was incorrect.  If this assessment were correct, the networks would have 

been able to generalize the data with which they were presented.  At face value, this 

argument initially seems plausible if one only considers the earlier end of training MSE 

findings.   

However, the difference in detection trends between file types that could provide a 

possible explanation for much of the learning and detection difficulty for the neural 

networks.  From Figures 2 through 5, it would appear that some file types benefited from 

additional hidden nodes, while for others, additional nodes were detrimental.  This could 

mean that these file types required a different neural network layout than the other file 
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types.  Therefore, the inclusion of these files in larger neural networks actually reduced 

the performance of the network.  So, rather than the network not containing enough nodes 

to adequately represent the data, it appears that some of the low learning rate could be 

blamed on the difference in optimal parameters for each of the file types. 

The neural network performance for altered files was generally lower than that for 

unaltered files.  This decrease in detection rate was expected because the files no longer 

matched exactly with a standard pattern for that particular file type.  This result lends 

credence to the notion that neural networks are resilient against changes in the files 

themselves.  If a well performing neural network configuration could be designed, it 

appears that it would be fairly well suited to changing data. 

However, when comparing the altered file detection rate with the unaltered detection 

rate, there was a slight anomaly in the data.  While almost all the file detection rates 

decreased with altered files, the BMP file detection rate actually increased.  At first, it 

was thought that this was the result of a data recording error.  However, this was not the 

case.  Therefore, there must have been another reason for the increase in effectiveness at 

detecting altered bitmaps.   

One possible explanation assumes that the neural networks were not successful at 

fully generalizing the training data (as noted in several other places in this research).  

Depending on how well the data was generalized, there could have been an abundance of 

“borderline cases.”  These borderline cases would fall just barely outside the detection 

criteria mentioned earlier.  For example, the average of a single output bit might be just 

below the cutoff of 0.5.  In these borderline cases, any alteration of the file might be 

enough to shift the average bit toward either direction of the cutoff point.  To assess 
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whether this might have been true, the list of altered files that were detected correctly was 

spot-checked against the list of unaltered files.  In every checked instance, the unaltered 

files were a borderline case.  Therefore, it appears that the anomaly may have been 

caused by the learning rate of the networks, rather than any data error. 
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6   CONCLUSION, RECOMMENDATIONS, AND FUTURE RESEARCH 

6.1 Conclusion 

In the configurations tested in this paper, neural networks were not a practical method 

for detecting file types in the real world.  However, this research provided a valuable 

foundation for future studies.  Since the detection rate of the neural networks was much 

better than random chance alone, we may assume that the networks were able to 

recognize some type of pattern in most of the files’ data.  This lends credence to the idea 

that data patterns may be a future way of identifying suspect files.   

Additionally, the neural networks' performance was stable even when the files were 

altered.  Therefore, while the neural networks as configured in this research were not 

effective, there is still some possibility that neural networks will provide a viable method 

for detecting file types in the future.  As such, this research has also pinpointed several 

possible avenues for future experimentation. 

6.2 Recommendations and Future Research 

Several possible research projects could center on increasing the effectiveness of the 

neural network configurations presented here.  As detailed throughout the project, it was 

known from the outset that this project might not result in optimal neural network 
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configurations.  Based on the results of the study, there appear to be several ways in 

which the file type detection rate of neural networks could be improved. 

One possible study could look at whether adjusting the number of training epochs 

would have an impact on the effectiveness of the networks.  As noted in the first section 

of Chapter 4, the number of training iterations may not have been sufficient.  Based on 

results of the study as a whole, the number of epochs appeared to have been adequate.  

However, an additional study could determine whether this assumption was correct.  This 

type of investigation would probably be most effective if it concentrated specifically on 

one of the neural network filtering methods. 

Another possible future study could attempt to isolate how much of the significance 

between neural network input configuration and performance was caused by the actual 

input filtering method.  This study was unable to quantify the difference between the 

performance change due to input node count and the performance change due to filtering 

method.  While there was some evidence that the filtering method played a role in the 

network effectiveness, a future study could better isolate the variables.  One possible 

method of isolation would be to reduce the raw input filtering to blocks of 256 bytes.  

However, this might have an unforeseen impact on the training because of the difference 

in the number of blocks presented to the networks. 

The most promising area for future investigation would to isolate the training by file 

type.  Some evidence indicated that the filtering method affected the file types 

differently.  There was also evidence that the number of hidden nodes influenced the file 

types in separate ways.  Therefore, it would be useful to split out the file types and train 

each file type on individual networks to see if the performance of the networks increases.  
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If the performance were to increase, investigation could pursue identifying the optimal 

configuration for each individual file type.  Once optimal configurations were found, it 

might be possible to arrive at standard configurations that have acceptable detection rates 

for a variety of files.
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Figure A.1 

Mean square error across training epochs for the character code frequency neural 
network with 10 hidden nodes 
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Figure A.2 
 
Mean square error across training epochs for the character code frequency neural 
network with 20 hidden nodes 
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Figure A.3 

Mean square error across training epochs for the character code frequency neural 
network with 30 hidden nodes 
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Figure A.4 

Mean square error across training epochs for the raw neural network with 10 hidden 
nodes 
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Figure A.5 

Mean square error across training epochs for the raw neural network with 20 hidden 
nodes 
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Figure A.6 

Mean square error across training epochs for the raw neural network with 30 hidden 
nodes 

 


