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Abstract

This report contains a survey of the state of the art in software engineering for secure
software. Secure software is defined and techniques used in each phase of the software
lifecycle to engineer the development of secure software are described. Also identified are
open questions and areas where further research is needed.

The survey reported here was undertaken to understand how the practice of software
engineering blends with the requirement of secure software. This has resulted in a novel
two-dimensional description of the relationship between the software lifecycle phases and
techniques for satisfying security requirements. The report is organized around this rela-
tionship.
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1 INTRODUCTION

1 Introduction

Computer Security is fast becoming an important issue in many areas. Traditionally, se-
curity has always been treated as an add on. An application was assumed to be secure
if it used cryptography, security protocols, etc. Security Mechanisms were treated as sil-
ver bullets. Attacks on protocols made the community realise that intuitive correctness
was insufficient for security. This resulted in the development of Formal Verification Tech-
niques for Security Protocols. But, Formal Verification has its own disadvantages. First,
it could only verify protocol design, it has theoretical limitations and could not guarantee
the security properties of protocol implementations. With the proliferation of hackers, who
exploit software defects, especially mundane defects, to compromise systems, security
aspects of software has become an area of concern. Security is now a feature of the
system as a whole. Researchers are concerned about security software–software whose
primary functionality is to implement a security protocol or mechanism, and security of
software–software that functions correctly under malicious use and that which does not
contain loopholes.

Verification and Static Analysis, which deals with the analysis of programs for com-
mon security flaws, after they are built, are not effective in ensuring security though we
acknowledge that a lot of progress has been made in analyzing artifacts. The complex
ways in which security permeates systems has led researchers to believe that software
engineering will be much more effective in ensuring security. This is because Software En-
gineering for Secure Software focusses on the top-down approach to building secure soft-
ware. From a software engineering perspective, one is interested in how the (1) existing
lifecycle phases, (2) artifacts and (3) techniques used in each phase should be augmented
(or perhaps new techniques introduced?) to support security. The holy grail of this field is
software which is secure by construction. In the words of Thomas Ball [Bal05], ”A program
is a very detailed solution to a much more abstract problem. Leading from a problem to a
program is a complex process.” We believe that security will improve only by focussing on
this process.

Security is a broad area. It deals with cryptography, security protocols, access control,
information flow, software security, program obfuscation, etc. In Section 2, we provide a
classification of security properties to simplify our presentation. Research efforts in this
area can be organized into a matrix as in Table 1, with rows representing phases of the
software lifecycle and columns representing various security concepts. We do not have a
complete recommended lifecycle to engineer secure software. Research focused on spe-
cific lifecycle phases is surveyed here. Empty cells in the table indicate areas where we
were unable to find any references. We restrict the scope of this report to the security con-
cepts outlined in Table 1. In particular, we do not cover privacy and security certification.
The citations in this report are intended to be representative of the state-of-the-art and not
thorough in any sense.

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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2 BACKGROUND

Table 1: Software Engineering for Secure Software

Research Requirements Analysis Implementation Testing

Engg. and and

Specification Design

Software 3, 6.4 3 3 3

Security 6.1 7.2 8 9.1

Security 6.2 7.1 9.2

Protocols 5

Firewalls 9.3

Intrusion 9.4

Detection

Obfuscation

Access 6.3 6.3.3 6.3.3

Control

2 Background

The term security may either mean Software Protection, Software Security or Information
Security.

Software Security: According to McGraw [CM04a], software Security is engineering
software to function correctly under malicious attack. Secure Software is software that
does ONLY what it is supposed to do and nothing else. Reliable software, on the other
hand does what it is supposed to do but may also exhibit some un-specified behavior.
Un-specified behavior is often harmful. Memory leaks, buffer overflows and other com-
mon attack patterns used by hackers are the results of un-specified software behavior.
Engineering Secure Software involves taking a pro-active approach. It is not an add-on
collection of techniques. It is different from security software. It is a feature of the entire
software system and cannot be ensured by using security mechanisms like access control,
encryption, SSL, etc.

Software Vulnerabilities and Risk: Software Security is affected by software vulner-
abilities. A vulnerability is either a defect, or a bug, or a flaw. Defects are implementation
and/or design errors. A defect may lie dormant in software for several years and then
surface in a fielded system with major consequences. A bug is an implementation-level
software error. Normally, bugs refer to low-level implementation errors that can be reme-
died by limited code analysis of the external environment. A flaw is s subtle defect at a
deeper level. Risk is the probability that a defect or a bug or a flaw is actually manifested
resulting in either an impact on normal software functioning or a failure. Risk is normally

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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coupled with a particular vulnerability though sometimes, a set of vulnerabilities may result
in a heightened risk.

Software Protection: Software Protection involves (1) protecting software from tam-
pering by a malicious host, (2) security of code as an artifact and (3) security of run-time
program behavior. By security of run-time program behavior, we mean securing the pur-
pose, control, and data-flow of parts of code. Sometimes, it is essential to prevent reverse
engineering of code. This is usually done by obfuscation [CTL97]. Thus, Code Obfuscation
refers to the process obscuring programs. Software implementing Obfuscation techniques
is also called obscurity software. Obfuscation being a security mechanism; obscurity soft-
ware is also security software.

Code Obfuscation is the process by which source code is transformed into an equiv-
alent one, i.e. the transformed code retains the same functionality as the original but is
substantially more difficult to understand and reverse engineer. Obfuscation is done either
by:-

1. Lexical Transformations - that modify only the lexical structure of the program, for
example - scrambling identifiers. Such transformations are generally not effective in
that code so transformed is relatively easy to reverse engineer.

2. Control Transformations - that modify the control flow of the program [CTL98b].

3. Data Transformations - that obfuscate data structures used [CTL98a]

Another approach to software protection is tamper-proof code, i.e. code, in which ad-
ditional logic is inserted after compilation, to detect tampering and respond to it. See for
example, the work by Atallah and Chang [CA01].

Information Security: Information Security refers to the Security of Information i.e.
confidentiality, integrity and control over information and/or resources. Information Security
includes Network Security, Access Control and Secure Information Flow. Network Security
refers to mechanisms used to secure information on the network, typically cryptographic
protocols which include mechanisms like PGP, SecureEmail, SSL, SSH, SCP, SecureFTP,
etc. or a combination of these. Network Security also includes mechanisms to avoid soft-
ware exploits such as firewalls,reactive mechanisms such as intrusion-detection systems.
Denial of Service and its prevention also falls under Network Security. Access Control
includes delegation, authorization, trust management etc. We place Trust management
under Network Security as well e.g. trust establishment, trust negotiation etc.

It is useful to examine how these concepts relate to each other. An attacker may take
advantage of a software vulnerability to compromise confidential information. Information
security mechanisms, such as protocols and access controls, are eventually implemented

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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3 SOFTWARE SECURITY

Figure 1: Security Classification

resulting in security software. Security Software may have vulnerabilities and we thereby
get into Software Security of Security Software or Secure Security Software. It is now
apparent that the word security is overloaded and has a different meaning in each context.
We wish to add that the classification in Figure 1 is not a unique or universally accepted.
We use it as terminology in this report.

3 Software Security

Research has focussed on using a risk management approach to software security. Good
software security practice leverages good software engineering practices: thinking about
security early in the software lifecycle, knowing and understanding common threats (includ-
ing language-based flaws and pitfalls), designing for security, and subjecting all software
artifacts to thorough objective risk analyses and testing. Complicating the software security
problem are reliance on networked systems and devices, easy extensibility and increased
complexity of systems.

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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Security Development Lifecylce (SDL) Research in Software Security Engineering
has focussed on using so-called best practices in the software lifecycle. As the name im-
plies, a security development lifecycle is a software development lifecycle where a special
emphasis is placed on software security in each phase. Two SDLs have been proposed to
integrate software security into the lifecycle, one is by Microsoft as part of its Trustworthy
Computing Initiative [HL03] and the other by McGraw [CM04a]. We refer to these efforts
as Microsoft’s SDL and McGraw’s SDL, respectively. Figures 2 and 3 provide a pictorial
overview of the two SDLs. As is evident, both SDLs have a lot in common.

Figure 2: Microsoft’s SDL

4 Model-based Security Engineering

Model-based security engineering, or Model-driven Security, is an approach to building
secure systems in which software engineers:-

• Formally specify the system requirements and other artifacts, e.g. design.

• Analyze models automatically against their security requirements, often using formal
analyses such as theorem proving, model checking and static analysis.

• Generate as much code as possible from the model.

• Generate tests from the model to test the final implementation

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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Figure 3: McGraw’s SDL

• Generate models from the source code for understanding and analyzing legacy sys-
tems i.e. code ⇒ model.

It has become a common practice in software engineering to use models. UML mod-
els are used in many development processes. Models are precise specifications of re-
quirements and design. They enable analysis, both formal and informal, and significantly
increase chances of early fault detection. They serve as specifications for successive
software engineering phases and, when sufficiently formal, they can be used to generate
code.

Models are used in security and policy specifications. However, security models and
system design models are typically disjoint and are expressed in different ways. In gen-
eral, integration of system design models with security models is poorly understood and
consequently, not adequately supported by most modern software processes and tools.
While the fully automated generation of a complex system from its model appears infeasi-
ble, it is possible to automate the generation of platform-specific support for certain system
concerns, in particular access control, persistence and logging.

The central artifacts that support Model-driven security are security design models
which combine security requirements and design. Rather than present one particular mod-
eling language for constructing these models, Lodderstedt and Basin [BDL04] propose a
schema for building such languages in a modular way. A language for constructing security
design models should have:-

1. A security modeling language for expressing security requirements and policies.

2. A systems design modeling language for constructing system models.

3. A dialect which combines (1) and (2) so that expressions in (1) can make statements
about model objects in (2)

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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5 UMLSec

UMLSec [J0̈2] is an extension of UML for Secure Systems Development. Research by
Jan Jürjens [J0̈3] is a partial realization of the Model-driven security framework. UMLSec
expresses security-relevant information within UML System Specification diagrams such
as interaction and deployment diagrams.

UMLSec is defined as a UML profile using three lightweight UML extension mecha-
nisms namely stereotypes, tagged values and constraints. A stereotype defines a new type
of modeling element by extending the semantics of the UML metamodel. Some UMLSec
stereotypes are link, Encrypted link, critical object, and fair exchange. Note that every UML
profile has a finite and fixed set of stereotypes associated with it. A stereotype has vari-
ables. A tag is an instantiation of a variable. Each stereotype has tags, threat specifications
and constraints associated with it.

Constraints specify security requirements and threat specifications model actions taken
by the adversary. Different threat scenarios can be specified based on adversary strengths.
UMLSec also provides cryptographic primitives such as encryption, decryption, and mes-
sage digest. An important point to note is that UMLSec has stereotypes and constructs
to model the underlying cryptographic system. Hence, tags and constraints that specify
security requirements can directly make statements about system components. Thus, in
UMLSec, knowledge of prudent security engineering has been encapsulated into stereo-
types so that they can be used in system modeling by developers.

6 Requirements Engineering and Specification

6.1 Abuse Cases

Abuse Cases, also known as Anti-Requirements or Misuse Cases, were introduced by
McDermott and Fox [MF99] and have been extensively studied by Crool et al. [CILN02],
Alexander [Ale04, Ale02, Ale03] and Hope et al. [HMA04].

A use case depicts the functionality of a system. It describes a complete transaction
between one or more actors and the system. Abuse cases represent ways in which a sys-
tem can be improperly used. It is important to note that an abuse case must be described
in terms of (1) transactions resulting in actual harm and (2) abuse of privilege associated
with each transaction.

One can never be certain as to where a flaw might occur or whether the attacker em-
ploys minimal abuse of privilege necessary. Hence, an abuse case represents a family of
transactions, with each family member associated with a range of privileges needed for the
abuse. They can be represented by UML use case diagrams and are usually described in
a natural language. See [MF99] for examples. Hope et al.[HMA04] advocate using attack
patterns to construct abuse cases. Akin to design patterns, attack patterns describe tech-

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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niques in an abstract way commonly used by hackers to attack software. An exhaustive
documentation of attack patterns is available in a book by Hoglund and McGraw [HM04].

Abuse cases make a System Engineer explicitly consider ways in which every new
requirement or feature can be attacked, at its conception. It is important to remember
that an abuse case is a generic requirements engineering concept and is not specific to
any security property or to software security. However, abuse cases cannot exhaustively
describe ways in which a software system can be attacked because they are manually
derived based on existing knowledge of attack patterns, hacks, etc.

6.2 Requirements Specification for Security Protocols

There has been a significant amount of research in requirements specification in the con-
text of Formal Methods for Security protocols. Meadows [Mea03a] provides a survey and
Syverson and Meadows [Mea03b, SM96] consider trends in requirements specification.
The term Formal Methods normally refers to a combination of:-

1. Use of a mathematical or a logical model, called formal model, of the security protocol
along with its security requirements specified mathematically, and,

2. an effective and tractable procedure to determine whether the protocol satisfies its
requirements

One approach in the formal analysis of security protocols is to analyze all feasible
traces of the state transition system (STS) and to determine whether or not the security
properties are preserved for each trace. Many Network security related properties are
trace properties such as secrecy, authentication, and fair exchange. If the protocol running
in parallel with the attacker is viewed as an STS, the protocol analysis problem for trace
properties can be stated as a reachability problem, i.e. the problem of determining if the
state in which the security property is violated is reachable from the protocol’s initial state.
This is usually done by model checking though other state-space exploration techniques
also exist. In this survey, we focus on formal specifications and their expressivity. The
reader is referred to [Mea03a] for a recent survey of verification methods.

6.2.1 Specifying Secrecy

Usually, each state of the STS has a set K which stores the current knowledge of the ad-
versary. Any term output by the protocol is added to K. The system has a set of rewriting
rules on terms in K which model the capabilities of the adversary. Under the Dolev-Yao
adversary model [DY83], the adversary can concatenate, de-concatenate, encrypt and de-
crypt if it has the key. Hence secrecy is usually expressed as a membership constraint on
K.

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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6.2.2 Specifying Authentication

Authentication is a correspondence property. The main goal of authentication is to es-
tablish the identities of the principals in the protocol. A correspondence property simply
states that one event corresponds to another in a protocol, i.e. it ties 2 protocol events
together. Consider a 2-party authentication protocol which authenticates a client C to a
server S. The authentication requirement, entity authentication in this case, of this protocol
can be stated as “If S accepts credentials and establishes a session with C, C must have
initiated communication and sent credentials.” Here the correspondence is between the
Accept event on the server side and an Initiate event on the client side.

6.2.3 Key Exchange

Key Exchange can be defined as a correspondence between theKey Accept event and
Key Send event i.e. in a 2-party (A and B) key exchange protocol, if B accepts a key, then
it must be the same key sent by A.

6.2.4 Electronic Commerce - related properties

In an electronic commerce protocol such as 1KP, payment authorization can be specified
as “If a customer’s credit card is debited, the customer must have authorized that debit.”
Thus payment authorization can be specified as an assertion on protocol events. In this
assertion, we may have to reason about the past and future of a protocol state.

6.2.5 Assertions on traces

Other security properties can also be specified as assertions on protocol traces. Anonymity
of a principal in a protocol can be specified as “If any principal P knows the real name of
principal A, then P always knew the name of A.” This is an assertion on the preceding
states, at every state on a protocol trace. This assertion may also contain references to
the past and the future.

Hence, security requirements of protocols can normally be expressed as correspon-
dence assertions or as constraints on protocol traces. Thus logic is a suitable language
to specify security protocol requirements. Some specification mechanisms explicitly use
temporal logic for reasoning about the past and future and some others capture that in the
semantics of the logical predicates. Using logic to specify security protocol requirements
isn’t new. We now provide references to the verification literature where this is done. These
are in no way exhaustive. Our only purpose is to illustrate that logic is a suitable specifica-
tion language.

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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6.2.6 Model Checkers

1. BRUTUS by Clarke et al. [CJM98, CJM00, Mar01] is a special-purpose model checker
for security protocols. It uses temporal logic to specify security requirements. This
temporal logic variant has quantifiers ranging over the instances of the model; it has
atomic propositions that refer to variable bindings, protocol agents and actions and,
the past time modal operator so that one can refer to actions that took place in the
history of a particular protocol trace. The terms of this logic, i.e. the terms on which
the atomic propositions are constructed, can specify cryptographic operations such
as encryption and hashing.

2. While BRUTUS is a specialized model checker, Mitchell et al. [MMS97] describe se-
curity protocol verification using the general purpose Murφ model checker [Dil96].
Mitchell et al. [MMS97] use a similar approach for security requirements specification
though it does not include a temporal operator.

3. Low [Low96a, Low96b] also uses correspondence assertions to specify authentica-
tion properties. Writing correspondence assertions can be subtle. Hence, Lowe [Low98]
defines high-level first-order predicates which can be used to specify security prop-
erties. These predicates are in turn translated into correspondence assertions for
analysis.

4. Li [LM05] uses First Order Logic to specify Simple Public Key Infrastructure (SPKI)
and Simple Distributed Security Infrastructure (SDSI) Key and Trust Management.

6.2.7 Theorem Provers

In the case of verification by theorem proving, security requirements are theorems which
ultimately have to be proved from a set of axioms and deduction rules on protocol actions.
They are expressed in logic, typically in first-order logic (FOL). These theorems are similar
to the assertions examined earlier.

Paulson [Pau98, Pau97] describes the verification of security protocols, including a
complex recursive authentication protocol using the Isabelle theorem prover where security
requirements are expressed as theorems to be proved in Higher Order Logic. Paulson has
successfully verified more complex protocols as well as in [Pau99] that describes the spec-
ification and verification of the TLS (SSL 3.1) protocol and in [Pau01, BMP05, BMPT00,
BPM02] that describe the verification of the Secure Electronic Transaction Protocol (SET),
one of the cornerstones of E-commerce.

6.2.8 Using the Z Specification Language

It has been mentioned earlier that logic is an effective specification language for security
protocols. Z is a popular specification language using sets, relations, functions and logical

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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assertions.
Long et al. [LFC03] show how to model cryptographic protocols involving most of the

common cryptographic operations such as symmetric and asymmetric encryption, mes-
sage digests, and nonces, in the Z specification language. Through a case study on the
Needham-Schroeder public-key protocol, they have shown how a security requirement can
be specified as a Z-invariant and how that invariant can bemanually proved or disproved.
The central idea behind Long et al.’s modeling is that protocols involve disjoint types of
data, e.g. keys, nonces, timestamps, addresses, encrypted data that can be specified
using data types in Z, cryptographic operations that are mathematical functions and be
specified as well, and logical constraints [LFC03].

6.3 Access Control (AC) Policy Specification

In this section, we survey visual (graphical) mechanisms used to specify access control
policies. A similar analysis has been given by Koch and Parisi-Presicce [KPP03].

6.3.1 Graph-based Specifications

Koch et al. [KMPP01a] describe a graphical method to specify access control policies. This
method consists of type graphs and instance graphs. The nodes of the type graph repre-
sent system entity types and each edge represents a relationship between 2 entity types.
Hence each access control policy model is represented by a type graph. For example,
User and Role are 2 nodes in a type graph representing RBAC [SCFY96, SFK00]. There
is an edge between User and Role labeled belongs to or is in.

Access Control policy models leave the nature of the protected resources open. A
particular system’s access control policy is obtained by instantiating the policy model. An
instance graph G is an instance of a type graph T, if and only if for each node and edge in
G, there is a corresponding node and edge type in T. An instance graph is a snapshot of
the system’s current access control policy.

Access Control policies often evolve over time. Evolution is specified through graph
rewriting rules, or graph transformation rules. Rewriting rules are defined on type graphs.
They may be applied to instance graphs to deduce the current state of the system. Koch
and Parisi-Presicce [KPP02b] extend this method to include both positive and negative
constraints for declarative specification. Their work also describes how constraints and
graph rules can be used to specify the composition of properties. Koch et al. [KMPP01b,
KPP02b] describe the formal semantics of this graphical language.

Using a graph-based specification method facilitates verification. An instance graph
represents a state of the system. Verification explores the state space where each tran-
sition is made possible by a graph rewriting rule. Verification of access control models is
usually concerned with generating and exploring this state-space to check for:-

This is a joint CERIAS and Software Engineering Research Centre (SERC) Tech Report
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1. Coherence between policy rules and constraints, i.e. whether or not all policy rules
construct states satisfying the constraints. This is done through a pairwise verification
of Constraint-Constraint, Constraint-Rule and Rule-Rule pairs [KMPP02a], or

2. Safety issues such as whether or not a given subject gets a given permission or
not. As shown by Koch et al., in general, safety for graph-based models is unde-
cidable [KMPP02b]. However, they also show that under reasonable restrictions on
policy rules, it is decidable.

Koch et al. [KMPP02c, KMPP00] describe the specification and verification of RBAC [SCFY96,
SFK00] in this formalism.

6.3.2 UML-based specifications

Koch and Parisi-Presicce [KPP02a] model access copntrol policies in UML using class and
object diagrams, stereotypes and OCL constraints. This is done by:-

1. Representing various entities and relationships in the AC policy by a class diagram.
For example, entities in Role-Based Access Control are various roles and their as-
signed permissions, users, sessions and objects.

2. Representing policy specific rules through UML stereotypes.

3. Special constraints, as in programmatic access control, through OCL.

It appears that the approach taken by Koch and Parisi-Presicce [KPP02a] is generic
and can specify most access control policies though there is no proof of its expressivity.
Koch and Parisi-Presicce [KPP03] provide an example specification of an RBAC policy
and [KPP02a] contains an example specification of View-based Access Control (VBAC),
which is an extension of RBAC for distributed object-oriented systems.

Also, the verification of UML-based access control policy specifications is done by
translating them into the graphical framework mentioned in Section 6.3.1. Koch and Parisi-
Presicce [KPP02a] describe this translation procedure.

Park and Kwon [PK05] model access control policies through UML and use this model of
the system and access control policy to generate Alloy Specification [Jac05] which is then
analyzed through the Alloy analyzer. They also employ the USE tool [Ric] to analyze parts
of the UML specification.

Alloy Specification of RBAC: Schaad and Moffet [SM02] use the Alloy Specification Lan-
guage to specify RBAC. Alloy seems to be the most suitable specification language for Ac-
cess Control policies because of its modularity and a conventional programming language-
like syntax. Specification in Alloy has the added advantage that it can be verified by the
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Alloy analyzer. Schaad and Moffett [SM02] have formally specified RBAC96, ARBAC97,
i.e. URA97, PRA97, RRA97 and Separation of Duty constraints in addition to analyzing
conflicts between SoD and ARBAC97 using the Alloy analyzer. RBAC96 was the initial
RBAC model as proposed by Sandhu et al. [SCFY96]. RBACs motivation is to simplify
administration of authorizations. ARBAC97 or Administrative-RBAC uses RBAC itself to
manage RBAC, i.e. to have administrative roles in RBAC. This provides administrative con-
venience and scalability, especially in decentralizing administrative authority, responsibility,
and chores. ARBAC97 [SBM99] has 3 components namely URA97 (user-role assignment
97), PRA97 (permission-role assignment 97), and RRA97 (role-role assignment 97) deal-
ing with different aspects of RBAC administration. For more information on Separation of
Duty, see Sandhu et al. [SCFY96], Li et al. [LTB05], Simon and Zurko [SZ97].

Ponder Specification Language: Ponder [DDLS01, LSDD00] is a specialized Policy Spec-
ification Language with a programming-language like syntax. It supports the specification
of most access control concepts and constructs, delegation, obligation constraints and au-
thorization constraints. Ponder specifications can be written in a structured manner and
can be grouped into composite specifications which are essential in large information sys-
tems and organizations. Ponder is not specific to information security. It is a generic policy
specification language.

6.3.3 SecureUML

UMLSec stereotypes cannot be used to specify access control policies. Basin et al. [LBD02,
BDL04] have designed another UML profile SecureUML to model and specify access con-
trol policies of distributed systems. SecureUML supports the specification of declarative
access control mechanisms, or access control policies, and programmatic access con-
trol mechanisms, business logic to override the default access control policy. Declarative
mechanisms are specified using the UML Profile and programmatic mechanisms using
UML’s Object Constraint Language (OCL).

SecureUML cannot model and specify protected resources. RBAC being a generic
security mechanism that leaves open the nature of the protected resources, SecureUML
does not have stereotypes for system modeling. Basin et al. [BDL04] define UML profiles
for:-

1. Distributed Object Oriented Systems - ComponentUML: Basin et al. [BDL04]
show how to combine SecureUML and ComponentUML. They define a SecureUML
version with ComponentUML as the system design language. These SecureUML
models are translated into Enterprise Java Bean (EJB) components and deployment
descriptors which specify the access control properties of those components. The
access control model of EJB is based on Role-based Access Control (RBAC). The
security subsystem of EJB Application Server is responsible for implementing access
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control policy as specified in the deployment descriptors on components. In addition
to all this, programmatic access control specifications are translated into Java asser-
tions in the Bean class.

2. Multi-tiered Applications - ControllerUML: ControllerUML is based on state
machines. The idea behind this profile is that in multi-tier applications, usually devel-
oped in accordance with the Model-View Controller pattern [GVJH98], the controller
manages the data flow between different views. Its behavior can be modeled by state
machines and there are access control issues w.r.t. views accessing the data sets.
Basin et al. [BDL04] also show how to combine SecureUML and ControllerUML and
transform these models into Java Servelet Components with deployment descriptors.
The execution environment supports RBAC.

Both these frameworks realize Model-driven security partially. SecureUML models are
not formally verified. Verification and Test Generation mechanisms for SecureUML are
prospective areas of research.

6.3.4 Other Access Control Specification Methods

Gavrila and Barkley [GB98] use set theory, functions and first-order logic to specify RBAC96,
URA97 and RRA97. Such specification is feasible becauseUsers, Roles, Permissions are
sets, assignment of users to roles and permissions to roles are functions, role hierarchies
are relations, some are partial orders, and constraints are logical statements with first-order
quantifications. Crampton [Cra03] specifies constraints, including Sod, in RBAC through
set theory and propositional logic. The difference between Gavrila and Barkley’s [GB98]
and Crampton’s [Cra03] work is merely syntactic. Bertino et al. [JBG05, JBLG05] uses
logic to give a formal semantics for the Generalized Temporal RBAC model (GTRBAC)
which can be leveraged to specify TRBAC policies.

6.4 Requirements Engineering for Software Security

Security is considered explicitly in both the SDLs during the Requirements Engineering
phase. Desired security requirements of the software should be explicitly specified.

Microsoft advocates using a separate security assessment team to engineer and eval-
uate the security of its products. It is the responsibility of the software development
team to identify all functional requirements including the security functional requirements.
Each team has a security engineer who reviews the product plan, functional require-
ments and determines security milestones and exit criteria. These requirements are well-
documented.

McGraw’s SDL advocates the use of Abuse Cases in the Requirements Engineering
phase.
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7 Analysis and Design

7.1 UMLSec models in analysis and Design

UMLSec includes all UML Analysis and Design artifacts like activity diagrams, deployment
diagrams, sequence diagrams and statecharts. The design of the system can thus be
represented in UMLSec. These diagrams can use UMLSec stereotypes and can have
constraints associated. That is how security requirements are integrated with system de-
sign in UMLSec.

Jan Jürjens and colleagues have developed a set of tools to analyze UMLSec mod-
els [J0̈5]. These models can be stored in an XMI file format and analyzed by a static as
well as a dynamic analyzer. The static analyzer, as its name implies, analyzes the static
features of UMLSec models. The dynamic analyzer is either a model checker or a theorem
prover.

Jürjens and Shabalin [JS04] describe the SPIN model checker. Here, the UMLSec
models are transformed into PROMELA - the modeling language of the SPIN model checker
and security requirements are transformed into never-claim or should not happen asser-
tions in PROMELA code. The security requirements on the UMLSec models are then
verified by model checking. This approach suffers from the state-space explosion problem
just as with any other model checker and leads to undecidable problems for infinite state
systems.

Jürjens [J0̈5] and Jürjens and Shabalin [JS05] describe the use of the (ATP) SETHEO
theorem prover for first order logic (FOL). Consequently, UMLSec models are translated
into FOL. The results from this formal verification step are fed back into the Error Analayzer
which reports them to the user along with those of the static analyzer. This approach has
been used in the development of:-

1. A Security Centric Biometric Authentication System from T-Systems Inc. and Project
Verisoft [J0̈5]

2. An attack on the TLS protocol [J0̈5]

3. Smart-card based Electronic Purse Specification for VISA International and Oktober-
fest [Jür04, J0̈1].

4. Multi-layer security protocol for HypoVereinsbank web application [HJ03]

5. Telemedicine Applications [Jür02]

As already mentioned, UMLSec realizes the Model-driven security paradigm only par-
tially. Also, research and case studies have focussed on using UMLSec to model cryp-
tographic systems and specify their properties such as secrecy, authentication, integrity,
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non-repudiation, fair exchange, electronic commerce systems and information flow. Gen-
eration of code or application infrastructure and of test cases, their adequacy, etc. are
open questions and areas of prospective research.

7.2 Analysis phase in Software Security - Life Cycles

In both the SDLs, the focus of the analysis phase is risk identification and assessment.
In Microsoft’s SDL, the primary software-security tasks during requirement analysis and
design is threat modeling and response. Threat modeling [SS04] consists of the following
steps:-

1. Decomposing the application using requirement specifications, UML activity diagrams,
data flow diagrams and other UML analysis-phase artifacts to identify the systems’
boundaries, trusted and un-trusted components, and data/resources (targets) that
need protection.

2. Identifying threats against each system target from the decomposition process man-
ually. This is done by training software engineers on common security vulnerabil-
ities. A framework based on common security vulnerabilities (STRIDE - Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privilege) is used to manually identify threats against targets. The team attempts to
identify such threats at the network, host and application levels.

3. Each threat is documented and modeled using attack trees which are decision trees
depicting the path to compromise. They provide a hierarchical, precise and structured
description of attacks.

4. The threats are prioritized because it may not be worthwhile to address all of them.
Microsoft uses the DREAD model which assesses threat based on its Damage Po-
tential, Reproducibility, Exploitability, Affected Users and Discoverability to focus on
threats to be mitigated.

Risk can be defined as the probability that a given threat actually occurs. Microsoft’s
SDL focusses on technical risk analysis based on analysis and design artifact us-
ing specific methodologies. In contrast, McGraw’s SDL [VM04] takes a broader ap-
proach. It advocates risk analysis based on requirements and business process/context.
Thus Risk Identification is a manual process based on a set of guidelines mined from
existing security vulnerabilities. However, there does not exist a standard assess-
ment method for software security risks. See [VM04] for a survey of various risk
measurement (quantification) techniques for software security.

In both the SDLs,
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1. Based on the risk associated, system engineers identify threats which have to be
addressed by the software system

2. System Engineers respond to threats by using security mechanisms such as au-
thentication, access control, digital signatures, security design patterns etc. In other
words, they try to mitigate identified risks.

Swiderski and Snyder’s book on threat modeling [SS04] provide a detailed description of
the processes mentioned above.

The completed design is subjected to a security review which focusses on refuting
identified threats. This is a manual review.

8 Implementation

It is advocated that the main focus during coding should be to prevent common (a.k.a
known) security-related flaws in code. So, Microsoft and McGraw’s SDLs recommend
using secure programming practices. Microsoft has published a set of best practices in the
book [HL02, HM04].

Once coding is complete, static analysis is used to detect common implementation
errors. Tools used by Microsoft in its SDL include PREfix, PREfast, PREsharp and espX.
These tools have a common functionality but differ in the techniques used and the target
language. For example, PREfix tool detects defects in C and C++ code using symbolic
analysis. Knowledge gained from security exploits is fed back into the static analyzer i.e.
used to develop the static analyzer and all further code is statically analyzed.

Static analysis tools seem to perform better than manual audits because they are faster
and encapsulate security knowledge in such a way that does not require the operator to
have security expertise. The focus in static analysis is to Aim for good, not perfect. The
output of the static analyzer still requires human intervention to rule out false positives.

A static analyzer is considered sound if for a given set of assumptions, it may produce
false positives but does not let a false negative slip by. Chess and McGraw provide a
survey of static analysis tools [CM04b].

9 Testing

9.1 Software Security Testing

The key issue in software security testing is how to test for un-specified behavior. Nor-
mally, in conformance testing and specification-based testing, the focus is to look for the
presence of some correct behavior and not the absence of additional behavior. This addi-
tional behavior may be manifested during the execution against a test input test case but
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may not be noticeable. For example, a tester while applying input X to an application may
look for result Y, but may not notice a trojan horse in the application which opens an FTP
connection to a server or the creation of a temporary file with confidential information.

In our opinion, significant research is needed to address the issue mentioned above.
Software security testing has traditionally focussed on constructing test cases from known
exploits. The idea is to maintain an exploit library and check if these exploits still work on
new software products. Or, to use previous exploits as templates and try to construct test
cases based on them. This is not the best testing technique, but is nevertheless important
because of the proliferation of free attack tools on the internet.

Many attackers are novice computer users who like to play around with systems. It is
widely acknowledged that such attackers use published attack patterns. Also, past exploits
give us a good idea of the attackers’ approaches which software engineers use to generate
tests thinking like what the attackers thought. See [Tho03, DWW99] for an overview.

Testing based on published attack patterns offers little defense against determined
hackers. One approach to detecting unspecified behavior during testing is to use program
monitors. Examples are the Regmon (For Registry Monitor) and FileMon (File Monitor)
tools produced by SysInternals (www.sysinternals.com) for monitoring the registry and file
system of Microsoft Windows, App-sight - a tool to monitor environmental interactions pro-
duced by Identify Software (www.identify.com).

In both the Security Development Lifcycles (SDLs) discussed earlier, Figures 3 and 2,
testing consists of 2 stages. One stage is testing the security functionality using standard
functional testing and the other of using risk assessments, attack patterns and threat mod-
els to manually derive tests. Each threat that is addressed by the design corresponds to at
least one test case in the test set.

The focus in risk-based security testing is to act like the attacker. McGraw [MP04] ad-
vocates training testers on security vulnerabilities and attack patterns so that they are able
to construct effective test cases. There have been limited attempts by McGraw and Pot-
ter [MP04] describe an approach at Cigital Corp. to automate software security testing for
Java Cards. They use the above mentioned approach to automatically generate test cases.
It is possible to use this approach since it is specific to a language and the application set.

McGraw [McG03] also employed intelligent fuzzing or data-mutation based software
testing. This involved deriving application interfaces from the design and making sure
that code correctly handles all data entering the interface. Test cases are derived by con-
structing input data that violate the API rules and using different mutations of the same.
McGraw [HMA04] recommends that abuse cases be used to derive tests. Such interface-
based mutation approach was proposed earlier by Maldonado et al. [DMM01] and Ghosh
et al [GM01] in the context of testing large applications. McGraw’s idea is that the soft-
ware system must ensure that any given abuse case is not manifested in it. Test plans are
derived from the design, in parallel with the coding phase. Test adequacy is determined
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through an external review of the security test plan.

9.2 Security Functional Testing

Security Software needs to be tested. There are several implementations of security proto-
cols which have to be tested for conformance. Model-based testing or specification-based
testing seems to be a promising approach to test for security conformance. As mentioned
earlier, security protocols, access control schemes can be formally specified in UML, Alloy,
Z, B and a host of other languages. There has been a significant amount of research on
generating test cases from formal specifications. More research is needed on the suit-
ability of the model-driven testing approach to security. A survey of model-based testing
techniques is beyond the scope of this report. We give pointers in [MC99, SC96, SCS97,
HNS97, Pre05] to the appropriate literature. Again, a comprehensive list of pointers ap-
pears to be too long. So, we refer the reader to the book [BJKP05]

9.3 Testing Firewalls

A firewall is a useful mechanism to protect the internal network of an organization. Firewalls
implement the network access policy if an organization. Some typical components of a
firewall are Stateful Packet Filter –which blindly looks at the types of packets and their
sequences, Content Filter–which inspects transferred data irrespective of the conveying
protocol, Network Address Translator, Application level gateway and Event Logger. It is
interesting to think of firewall rules and specifications in terms of traditional access control
models though more research is needed to rigorously relate them.

Senn, Basin and Caronni [SBC05] describe the specification based testing of deployed
firewalls. They also describe the syntax and semantics of a simple firewall policy descrip-
tion language. A firewall policy formalizes the various types of traffic allowed between
different zones, a zone being a portion of the network separated from the rest of the net-
work by firewalls. The formal firewall specification is converted into a Mealy automaton
and abstract test cases are generated using the Unique Input/Output Sequences (UIO)
method [SD88]. The abstract test cases are then instantiated for various protocols and IP
addresses which are present in the policy specification. They assume that firewalls are
stateful packet filers and are thus able to keep the specification language simple and con-
vert the spec into a deterministic FSM. The disadvantage is that complex firewalls which
use timing and sequence numbers cannot be modeled. But, this approach of testing a
deployed firewall not only helps uncover errors in its implementation but also in its config-
uration.

Jürjens and Wimmel [JW01] describe the specification-based testing of stateful packet
filters using a CASE tool. The firewall is specified in AUTOFOCUS, a tool for graphically
specifying distributed systems [HSSS96, SPHP02]. The structural view of the network
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is described by a system structure diagram (SSD) and each component of the SSD is
specified by a State Transition Diagram (STD). STDs are Extended Finite State Machines
(EFSMs).

Jalili and Rezvani [JR02] also describe a simple specification language for stateful
packet filters akin to that of Senn et al. [SBC05]. Jalili and Rezvani do not derive test cases
but formally verify the consistency of the firewall specification using a theorem prover. More
research is needed to verify the correctness and reliability of the firewall specification.

It is recommended that firewalls be also subjected to vulnerability-based testing i.e.
deriving test cases from known firewall vulnerabilities (see Fahmy et al. [KFS+03] for a
description of some firewall vulnerabilites).

9.4 Testing Intrusion-detection systems

As we know, Intrusion Detection Systems help identify intrusions or misuse of computer
systems by either authorized users or external perpetrators. IDSs detect intrusions by an-
alyzing information about user activity from sources such as system tables, audit records,
logs and network traffic summaries. IDSs heavily depend on information about past ex-
ploits to detect intrusions. The quality of an IDS is also heavily influenced by the quality
of its intrusion signatures or intrusion models. A perfect model would be able to detect
all instances of the modeled attack without making mistakes. In technical terms, a perfect
model would produce a 100% detection rate without false positives.

So, how exactly can one test intrusion detection systems ? Testing IDSs is done in two
stages— one by the manufacturer who tests the IDS for conformance i.e. whether the IDS
is able to get a 100% detection rate for its model. We could not find any literature on the
specification-based testing of IDSs.

The next stage in IDS testing is at the site of deployment. The customer must test the
effectiveness of the IDS. Manufacturers do not provide guarantees for the effectiveness of
any IDS. In fact, in most cases, the intrusion signatures of the IDS are not published or
even shared with the customer. This is because, if the intrusion signatures are known, an
attacker could easily generate attack scripts to circumvent the IDS. Normally, once an IDS
is manufactured, it is tested and benchmarked based on its ability to detect a particular
suite of intrusions. This test suite is obtained manually by mining past exploits. DARPA
sponsored an IDS testbed at the Lincoln Laboratory of MIT [LHF+00a, LHF+00b]. Though
there have been critiques of the effectiveness of its test suite [McH00], this is the first effort
in benchmarking based on black-box testing of IDSs.

Vigna, Robertson, and Balzarotti [VRB04] describe a technique to test IDSs using mu-
tations. Note that this black box testing technique is different from mutation testing, which
is a white-box technique to evaluate the effectiveness of a test suite. Vigna et al. apply mu-
tant operators to attack templates to automatically generate a large number of variations of
an attack which are used as test cases to test the IDS. Obviously, this does not provide a
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formal evaluation of the goodness of the detection model, but nevertheless it is an effective
technique to increase one’s confidence in the generality of an IDS’s model.

Puketza et al. [PZC+96] advocate using equivalence partitioning for the IDS test case
selection problem. They recommend that published intrusions be grouped into equivalence
classes based on their intrusion signatures and software vulnerabilities exploited. Hence
we get two equivalence partitioning schemes and two test suites, one corresponding to
each scheme.

10 Summary and Conclusion

In this report, we have surveyed the state of the art in Software Engineering for Security.
All work surveyed here is state of the art though some, such as the SDLs in Figures 2 and
3 are state of the art as well as state of the practice.

Software Security relies heavily on best practices. Knowledge gained from attacks is
mined to model threats, analyze risk associated with each of them and mitigate them in
the software lifecycle. More research is needed on the use of formal methods for soft-
ware security. This includes research on using formal specifications for software vulner-
abilities, threats and automated generation of test cases from specifications. The ideal
scenario would be to use formal methods and remove manual intervention in every phase
of the lifecycle, but we believe that further research is needed for that. Some research
effort has gone into the classification of security vulnerabilities (see for example Aslam et
al. [AKS96]). It remains to be seen how such classification can be leveraged during design
and testing for security.

In Network Security and Access Control, significant research has been reported on
formal specification of the system and its requirements. As we mentioned earlier, most
of this research is in the context of Formal Verification of Security Protocols. More re-
search is needed on the integration of security requirements with that of the system and
the generation of code from the design. Also, more research is needed on specification
techniques for complex protocols, e.g. the Data Integrity Protocol for Distributed Media
Streaming [HXA+05] and Group Key Agreement protocols [AKNR+04].

There has been a lot of research on specifying security protocols and access control
mechanisms in formal languages. Also, there has been wealth of research on Formal
specification based testing. Exploring the transitivity here–Specification-based testing for
security and its effectiveness, is an interesting area of research. One of the key questions
to be answered is whether existing test generation algorithms are suitable for security
testing. Another issue is whether security testing should focus on functional testing or
whether it should, in addition, include formal risk-based and threat-based testing.

There has always been a debate on whether security requirements should be treated
as functional or non-functional requirements. The main purpose of certain software is to
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ensure communication security, access control, etc. which are functionalities. So it is
argued that security requirements should be functional. On the other hand, security is
an emergent feature of a system, i.e. it is a product of the effectiveness of the software
engineering practices adopted and also, new ways to attack a system emerge everyday.
So, should security be a non-functional requirement ? This difference plays a critical role
in the importance assigned to security requirements by the software engineering team. It
is recommended that security be always treated as a high-priority requirement and not as
an add-on. We may never answer the question whether security is a functional or a non-
functional requirement but, the idea is that it should not matter as long as we assign great
importance to it.

Research on security testing has not focussed on unit testing to the best of our knowl-
edge. A lot of research is needed on engineering firewalls, intrusion detection systems and
obfuscation software.
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