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Abstract vacy is defined as “the ability to prevent other parties from
learning one’s current or past location”. Using locationing
Location-based services, such as finding the nearest gagechnologies, a service provider can track the whereabouts
station, require users to supply their location information. of a user and discover her personal habits. These pieces of
However, a user’s location can be tracked without her con- sensitive information can be sold to unknown third parties.
sent or knowledge. Lowering the spatial and temporal reso- It is often feared that government agencies can monitor the
lution of location data sent to the server has been proposedbehavior of individuals, the places they have visited, etc.
as a solution. Although this technique is effective in protect- Preventing location privacy from being invaded is thus of
ing privacy, it may be overkill and the quality of desired ser- utmost importance.

vices can be severely affected. In this paper, we investigate Recently several solutions for location privacy protection
the relationship between uncertainty, privacy, and quality have been proposed. Some researchers suggest the use of
of services. We propose using imprecise queries to hide thespolicies”, in which the service provider is required to state
location of the query issuer and evaluate uncertain informa- explicitly how user's location information can be used [20,
tion. We also suggest a framework where uncertainty can be10, 9]. In another proposal, a user “cloaks” her information
controlled to provide high quality and privacy-preserving pefore sending it to the LBS, by providing her location at a
services. We study how the idea can be applied to a mov-ower resolution in terms of time and space [7, 2]. In other
ing range query over moving objects. We further investigate words, rather than giving a precise location and time instant,
how the ||nkab||l'[y of the proposed solution can be protected a |arger region covered in a time frame is reported_ This
against trajectory-tracing. solution, also known ascation cloaking provides the user
with more flexibility in controlling her information. We will
study it extensively in this paper.

1 Introduction By reducing the granularity of spatial and temporal in-
formation, location cloaking allows a user’s privacy to be be
Positioning technologies such as GPS, GSM, RF-ID and better protected. Unfortunately, this scheme can also reduce
WiFi(802.11) have undergone rapid developments in recentthe quality of service provided by the LBS. This is simply
years [19, 21, 7]. These new technologies allow locations because the LBS does not have the most accurate informa-
of users to be determined accurately, and enable a new claston to provide the best service. Consider a remote cab ser-
of applications known as Location-Based Services (LBS). vice that allows a subscriber to call for a cab nearby. If the
An important LBS is the E-911 application mandated by subscriber reports her precise location, the service provider
the U.S. (correspondingly E-112 in Europe), which requires can find her the closest cab, and can tell the cab driver how
cell phone companies to provide an accurate (within a few to reach the customer. However, if only a vague location
hundred feet) location of a cell phone user that calls for is given, it may take more time for a cab to reach the cus-
emergency help [7]. Another example is the use of RF-ID tomer. Indeed, for such a scheme, there is a tradeoff among:
tags on items such as razors in large departmental stores fo¢1) How uncertain the location information sent by a user to
inventory management [21]. the LBS is, (2) the location privacy of the user, and (3) the
Although LBS applications hold the promise of safety, service quality. In this paper, we propose a framework de-
convenience, and new business opportunities, the ability tosigned for moving-object environments. The model takes
locate users and items accurately also raises a new concern iato account these three factors, allowing us to have a better
intrusion oflocation privacy According to [2], location pri-  understanding of their interaction. We also present a formal



model for cloaked locations, and provide metrics for quan- e Quality metrics for IMRQ based on data and query im-
tifying privacy of location cloaking. precision;

We then investigate the role of the location-cloaking
framework for non-anonymous application, where the
owner of the location is reported to the service provider,  |nference attacks and protection for the scheme.
in addition to the location data itself. We choose this type
of applications because existing techniques usually focus The rest of this paper is organized as follows. We pro-
on anonymity or pseudonymity of the users’ identities, and pose a framework to capture data uncertainty, privacy and
it is not clear how they can be applied to non-anonymous quality of service in Section 2. In Section 3, we formally
solutions. Moreover, non-anonymous location-based appli-present the definitions of non-anonymous applications, lo-
cations post extra difficulties in privacy protection due to cation privacy, cloaking and service quality. Section 4
the fact that the owner of the location is also known to the presents a querying algorithm, and Section 5 describes ser-
service provider. vice quality metrics for moving-range queries. Experimen-

A non-anonymous guery studied extensively in this pa- tal results are presented in Section 6. Section 7 investigates
per is themoving range queryMRQ), where a user is no-  the problems of location inference and their corresponding
tified any object of interest within a fixed distance from solutions. Related works are presented in Section 8. We
her current location. This query is well studied in spatial- conclude the paper in Section 9.
temporal database literature (e.g.,[14, 15]). Here we study
an “imprecise” version of moving range query, namely 2 A Framework for Balancing Privacy and
IMRQ. Essentially, an IMRQ processes cloaked locations Service Qualit
: i . : : y
instead of precise locations. Moreover, since the location
of the query issuer is also inexact, the query itself also car-
ries uncertain information. Due to the uncertainty of the
query and data, the query result is “imprecise”, and proba-
bilistic guarantees are augmented to the answers. For exam
ple, an answer for IMRQ{(S1,0.4), (S2,0.8)} means that
userssS; and S, have probabilities of 0.4 and 0.8 respec-
tively of satisfying the query. We develop query processing

algorithms for computing probabilistic answers for IMRQ, duces the cloa_kgd Iocatlon_and an _“lmpreC|f5e" Service re-
based on spatial database techniques. guest. On receiving these pieces of information, the service

We also study the quality metric of IMRQ, in order to provider processes the request and sends back the service

guantify the ambiguity due to the inexactness of cloaked lo- and fgedback to thg user. .

cation data. We define two different metrics, one based on Inside the C'Oak'”g, agent, theolicy trapslator pro-
uncertainty in the database, and the other based on the amc_iuceg a cloakgd location (i.e., a larger reglon} based on the
biguity of the query. These scoring metrics can be used to(Precise) chatlon of the user as we_II as her privacy require-
quantify the quality of a service, allowing the user to decide ments, which can be specified using some_h|gh-level_ lan-
whether she should adjust the granularity of her cloaked lo- 9429€s such as EPAL [1] and P3P [6]. For instance, if the
cation information in order to attain a better service. Exten- USEr'S requirement s “generate a cloaked location that cov-

sive simulations are performed to study how these quality ers five buildings when | am in Ared”, the p°"c¥ trans- )

metrics fare in a moving-object environment. lator produces thg c_orrespondmg cloaked Iocatl_on when it
Finally, we address the issues of inference attacks, wheredeteCtS_ the useris in Arel. 'I_'he cloaked location pro-

future locations can be inferred based on tracing movementduced is then directed to tiservice translator.

in the past. We study modifications to our approach in order Based on the cloaked location and the service request,

to prevent the linkability between a user’s identity and loca- the service translator produces an “imprecise” service re-

tions from being increased, thereby reducing the impact quuest. For example, _the MRQ is a service request from
this kind of threats. the user, and the service translator transforms the MRQ to

To summarize, our major contributions are: IMRQ, an imprecise service request t_hat processes cloqked
location data. Both the cloaked location and the imprecise
e A framework that relates location cloaking, privacy service request are then Shipped to Mﬂ'@I’ECiSG service
and quality of service; processor which stores the cloaked location in a spatial-
temporal database and processes the service request. Since
location values are imprecise, the service processor pro-
e An evaluation algorithm for IMRQ that manipulates duces a “probabilistic service result” i.e., answers are aug-
cloaked data; mented with probability to indicate the confidence of their

e Experimental results for the proposed scheme; and

Let us now describe a system model that connects pri-
vacy, cloaked information and service quality. It forms the
basis for subsequent discussions.

Figure 1 illustrates this framework. Its main idea is to al-
low the user to specify her location, service request and pri-
vacy requirements to theloaking agent which then pro-

¢ A formal model of cloaking and privacy metrics;
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Figure 1. Managing Privacy and Service Quality with Cloaking Agent.

presence [3]. For example, the result of IMRQ contains 2. Pseudonymous: This type of applications needs to

user names together with their probabilities. In addition, know the identity of a user, but it can use the user’s
a score indicating the quality of the service is generated. pseudonym, rather than her real identity. An exam-
These technical issues are detailed in Sections 4 and 5. ple is: “When | walk past a computer kiosk, display

Both the probabilistic service result and the quality score my emails”. The LBS can use the user’'s pseudonym,
can be transferred directly to the user, or optionally to the rather than her real name, to retrieve her emails.

result translator inside the cloaking agent. The main pur-
pose of the result translator is to hide the technical details
of the probabilistic service result (e.g., probability, qual-
ity scores), and converts the answers to a higher-level form
that even casual users can understand. For example, for an
IMRQ, the translator can choose to return only the names
for which there is a high confidence (e.g;,> 0.8) and not
return any probability value. It can also describe to the user
the quality asLOW MEDI UM and HI GH for quality score
ranges betweefD, 0.2],[0.2,0.8],[0.8, 1] respectively, in-
stead of requiring the user to interpret the numerical values.
Based on the recommendation from the cloaking agent, the
user can then decide if the degree of privacy should be re-

3. Non-Anonymous: This application class does not
work without knowing a user’s true identity. A typi-
cal example is: “When | am inside the building, let my
project groupmates know where | am”.

These three classes of applications are arranged in the as-
cending order of the amount of information about the owner
of the location information is disclosed. The more the in-
formation is disclosed, the higher is the risk to the intrusion
of privacy. We are interested in studying the protection of
privacy for non-anonymousapplications, which involves
more privacy-related information than the other two service
classes.

duced. Our framework, however, is not limited to non-
. . . ] anonymous applications — it can be applied to anonymous
3 Privacy, Cloaking, and Service Quality or pseudonymous applications as well.

In this section, we outline the classification of LBS, 3.2 Protecting Privacy by Cloaking
based on which non-anonymous applications are defined.

We then explore a formal model of location cloaking, based A non-anonymous application is defined formally as fol-
on which privacy is defined. lows.

3.1 Classification of Location-based Services Definition 1 Non-anonymous  Application: a
user supplies to the service provider a tuple
An LBS application can be classified according to how (User | D, L(t),r equest ) at time ¢, where User|D
the identity of the owner of the location information is dis- is the identity of the user and(t) is the location of the
closed along with the location information. In general, there user at timet with coordinates(z(t),y(t)). On receiving
are three classes of LBS applications [2]: this tuple, the service provider processesrtieguest and

] o ) returns the service results to the user.
1. Anonymous: This application class works with loca-

tion information only, and does not require a user’s  When a service provider receives the request, it can as-
identity. For example, in querying a LBS about the sociate the identity of the uset)ger | D) with her current
price of a coffee when approaching a coffee shop, alocationL(¢). By correlatingL(t) with a map, it is easy to
user only needs to supply her location to the LBS. obtain the region the user is in. If the ares@nsitive[8],



probability 3.3 Measuring Privacy of Cloaking
density

function

By “injecting” different amount of spatial uncertainty to
her location, cloaking provides a simple way for a user to
control the release of her private information to untrusted
parties. The degree of privacy can be measured in two ways:
(i) size of uncertainty region and (ii) coverage of sensitive
area.

(a) (b) 1. Size of uncertainty region. By providing a larger
uncertainty region, the spatial resolution of a location is
reduced, making the user’s location more difficult to be
guessed. The size of the uncertainty region can thus be
used to reflect the degree of privacy: the larger the region
size, the more the privacy.

e.g., a hospital or the house of a political leader, the user's 2. Coverage of sensitive regionThe second means of
privacy may be threatened, since this information can be guantifying privacy depends on the location of the user. To
sold to third parties without the user’s consent. The user’s See this, assume the size of the uncertainty region is fixed.
identity is said to have a high degree of “linkability” with  Suppose the user is inside a hospital (which she does not
her location (using the definition of “linkability” in [17]). want people to know about this), and her uncertainty region

The purpose of protecting privacy for non-anonymous has.a fraction of 90% overlap _with the hospital. One can
applications is to reduce the degree of linkability. One way ©2Sily guess she is in the hospital. On the other hand, if the
to do this is to require the service provider to state its poli- US€r iS shopping in a mall, she may not be very concerned
cies of using the user’s location information [20, 10, 9]. €Ven if her location is known.

However, this places the burden of privacy protection to ser- From this example, we can see that whether the user's
vice providers, and it is often doubtful whether these poli- 10cated in a “sensitive region” (e.g., hospital, nightclub) af-

cies are enforced adequately. Even if these policies are im-f€CtS the degree of privacy. Based on this observation, we
plemented correctly, location privacy can still be breached d€fine the “coverage” of sensitive region for usgras fol-

if attackers obtain this information through the communica- 'OWS:

tion channel. In this paper we use a complementary tech-
nigue calledcloaking where the user takes a better control
over linkability by adjusting the degree of accuracy of the
spatial information sent to the service provider [7, 2]. Letus
assume the system hasusers with names$+, S, ..., S,.
Also, the current location of each us&yis L;(t). We can
define cloaking as follows.

Figure 2. Exact and cloaked location.

Area(sensitive regions of; N U, (1))
Area(U;(t))

In general, the higher the coverage, the lower the privacy.
In the previous example, the coverage is 90%, and thus the
user can be easily guessed that she is in the hospital. Thus
the uncertainty region should be enlarged in order to assure
that the user’s location cannot be easily associated with a
sensitive region.

Coverage=

@)

provider a closed region called uncertainty region, denoted region is user-specific. For example, while for a physician
U, (t), such thatL; (¢) is insideU; (¢). a hospital may not be a sensitive region, the same cannot be

said about a patient.

When the service provider receives the uncertainty re-3 4 Cloaking and Service Quality
gion, it perceives that each point of the region has an equal
chance of being the user’s true location i.e., the prObab”lty A|though C|0aking lessens the threat to location privacy,
density function (pdf) of the user’s location within the un- it can affect thequality of service provided. In particular,
certainty region 'S,m- Hence the service provider  sjnce the service provider does not receive accurate location
does not know the user’s precise location. Unless statedinformation, it may be impossible for it to provide a good
otherwise, we also assume that the uncertainty region in-service. For example, suppose a user wants to know who is
formation received by the server does not change until newher nearest neighbor, and her cloaked location is supplied.
location data is reported. Figure 2 shows the difference be-Then there can be more than one answer that satisfies her
tween an exact location and a cloaked location. It also illus- query, and the user may be unable to get a precise answer.
trates that the user’s location is uniformly distributed within Next we study the technical details of querying cloaked lo-
the region from the service provider’s perspective. cations and measuring query quality.



4 Evaluation of Imprecise Queries .
2
0

In this section, we study the technical details of the eval-
uating cloaked locations in a database system. We first dis- Ls
cuss how a traditional query can be “transformed” to a query o
that handles cloaked information. We then illustrate how the
guery can be evaluated in a spatial database. We also exam-
ine the quality of moving range queries. Tim®ving range
queryis used as a running example.

4.1 Precise and Imprecise Queries (a)

Intuitively, a moving range query is a range query whose  Figure 3. Moving Range Query using (a) exact
“range” depends on the position of the user. For example, locations, and (b) cloaked locations.
a user may specify that she wants to be notified of any of
her friend who is within ten meters from her. The reader is
reminded that although here we assume a range query has a

circular shape our methods can be applied to range queries Figure 3(b) shows a scenario where an IMRQ is

with any geon;etrlc shfape. in whici is i computed over cloaked locations, with range queries is-
Let F; be the set of users in whicsj; is interested, and sued at two different locations iV, (¢). For Q, the

letr; be the radius of the circle with;(¢) as the center. We answer is{(Ss,0.2), (53,0.6), (S4,0.7)}, while for the

can define a moving range query as follows. Qo, the answer is{(S3,0.9), (S1,1)}. After consider-

ing the probabilities of the objects satisfying the range
queries issued at all possible pointsih(t), the answer
{(52,0.1),(S3,0.7),(S4,0.9)} is returned. The probabili-
ties in the answer allow the user to place appropriate confi-
dence in the answer, which is the consequence of evaluating
cloaked (or imprecise) location values. Depending upon the
requirements of the application, one may choose to report
only the object with thé& highest probability value, or only

Definition 3 Given a userS; with parametersF;, L;(t)
andr;, a Moving Range Query (MRQ) returns{S;|j =
1,...,n}, such thatS; € F;, andS; has a distance less
thanr; units fromsS; at timet.

Figure 3(a) illustrates a MRQ. If we assunig =
{52, S5, 54}, thenS, is returned as the only answer. Note

that t_o answer MRQ’ the system needs to know both the‘those objects whose probability values exceed a minimum
location and identity of each user so that the query can bethreshold. Our proposed work will be able to work with any
answered. It is thus a non-anonymous query. Further, whenof these models. Now let us examine how IMRQ can be
a user submits a MRQ, the user needs to submit her name, - |uated.

in addition to her current position, so that only the names

of the people of interest to her are returned. As discussed
in the last section, privacy can be threatened since both the
identity and the location information are supplied to the ser-
vice provider.

Location cloaking can alleviate the threat to privacy. In-
stead of supplying exact locations, users only supply their
cloaked locations. We call the version of MRQ that employs
cloaked location informationmprecise Moving Range

Query. The word “imprecise” arises from the fact thatthe 2. Evaluation Phase, which computes probabilistic an-

.2 Evaluation of IMRQ

Given a MRQ and a cloaked locati@n (¢), computing
its corresponding IMRQ involves two main steps:

1. Transformation Phase, which converts the MRQ to the
IMRQ, and

guery is made ambiguous by imposing uncertain informa- swers for the IMRQ.
tion on the location of the user submitting the query. Itis
formally defined below: Transformation Phase.In MRQ, the query range of the

userS; is a circleC; with radiusr; and centet;(t). If the
Definition 4 Given a uselS; with parameters;, U;(t) and user transmits her cloaked location, the query range is no
r;, anlmprecise Moving Range Query (IMRQ) returns longerC;, since the service provider has no idea of where
a set of tuples{(S;,p;)|l7 = 1,...,n}, whereS; € Fj, L;(t) exactly is. The service provider does know tfiaft)
andp; > 0 is the non-zero probability that usef; has a is within U;(¢), so it transforms the query into sub-queries
distance less than; units fromS; at timet. over all possible locations df;. In other words, at each



point (u,v) € U;(t), a query is issued to find out which
users are within the regiofi (u, v), whereC/(u,v) is the Input _ o _ _
circle with radiusr centered afu, v). The result of IMRQ T I* relation containing<ID, uncertainty region- of all users */
is essentially the union of the results of the range queries IS;’" Ulgf) i |dentt|ty anfd”L\J/lcher;amty;ch/m of use; */
issued at each point ii; (¢). The transformation potentially 1, 7i I Parameters o Q for usef;
. . M /* resolution of IMRQ */
covers more objects than MRQ. In Figure 3, for example,
the cqnyerted ranges in (b) overlap wi{ths, S3, S4} while Output
the orlglna_l query in (a) 9”')/ covers,. _ (S;,p;) I* names and probabilities of users that satisfi es IMRQ */
Evaluation Phase. Since the location of each object
is uncertain, each user only has some chance of satisfy-Transformation Phase

ing the IMRQ. In particular, ifS; € F;, then the prob- 1. Divide U;(t) into M equal subregions.
ability p;(u,v) of userS; satisfyingS;'s request at point 2. Letgy (m = 1,..., M) be the midpoint of then-th subregion.
(u,v) € Ui(t) is given by 3. Let! be arelation with attributeguser-name, regios.
4.form«—1,..., M do
Area(U;(t;) N Ci(u,v)) a. Let them-th row of I be < S;, C!(midpoint of m-th subregion >
Pi (V) = = R 1)) )
T Evaluation Phase
wheret; < tis the time instant of the latest value &f, 5. LetV be a relation yvith attributes user-nameprob >.
andU;(t;)NC;(u,v) is the common region betweén (¢;) 6. Evaluate the following query:

andC!(u,v). For simplicity, we assumé&;(t;) = U;(t).2
Essentially,p;(u, v) is the fraction ofU;(t) that overlaps
Cl(u,v).

INSERT INTOV VALUES
(SELECTT.ID, Area(Intersectiofi .region, T.region))/Area(T .region)

o o . FROMI, T
The total probability ofS; satisfying the IMRQ issued WHERE Overlapél.region, T.region)

by S; is given by the integration of the product of the pdf of AND 71D <> T.ID
) , ; 1 ) .
users;’s location at(u, v) (€., argzy77) andp;(u,v) AND (71D INTERSECTF%) <> NULL;
over all(u,v) € U;(t). Therefore,
7. Evaluate the following query:

1
p; = ——————p,(u,v)dudv ®3)
! /Ui(t) AreaU; (1)) SELECTID, SUM(prob)
Area(U;(t;) N Cj(u,v))dudv FROMV
_ fUz‘(t) AU () (u,0)) 4) GROUPBYID;

AreaU; (t))Area(U; (t5))

by substitutingp, (v, v) with Equation 2. The probability
value so computed serves as an indication of the confidence Figure 4. Evaluating an IMRQ.
placed on the answer. For example, in Figure 3fh)js
only 0.1, showing tha$, is unlikely to be answer, whil&s
andS, have a much higher chance (0.5 and 0.9 respectively) M subregions, wherd/ is called “resolution” and is a pa-

of being the answers. rameter that controls the precision of the query answer. The
range query region formed by each midpoint of the subre-
4.3 Query Implementation gion is inserted to relatiof (Steps 3 and 4).

In the Evaluation Phase a spatial-join using th&ver-

We now address the implementation issues of IMRQ pre- |apspredicate is performed between the range query region
sented in the last section. of I and the uncertainty region @ (i.e., the tuple pairs that

We assume the service provider maintains a spatial-have non-zero overlap are joined [18]). These joined tuples
temporal database system for storing the location informa-correspond to users that satisfy any of the queries formed
tion of each user. Lel' be a relation with two attributes by the midpoints of the subregions. Out of these join pairs,
<user-name, region, which stores the identity and the ge-  only the identities of users who are the member#pare
ometry of the current uncertainty region of all users. Fig- inserted, together with their probabilities (Equation 2), to
ure 4 describes an evaluation algorithm for IMRQ. relation V' (Steps 5 and 6). Notice that tHetersection

In this algorithm, the first four steps correspond to the function evaluates the geometry of the common region of
Transformation Phase Steps 1 and 2 partitioli; (¢) into two given regions, while thé&reafunction returns the area

1The possible locations &f; at timet may be derived from the location ofa g_lven region, which (_:an be compu_ted using well k.nown
att, if the maximum speed of; is known. We investigate this issue in @lgorithms from the spatial database literature [18]. Finally,
Section 7. Step 7 sums up all the probability values that belong to the




same user in the relatidn, corresponding to Equation 4. It  Equation 5 for all objects that satisfy the IMRQ:
returns the identity and probability of each user that satisfy- 0.5
ing the IMRQ. Data score forS; = —— Y lp; = 05| (6)

This algorithm can be implemented by PL/SQL and any | Bil JERiAj#i 0.5
spatial database system that supportsQkerlapjoin, In-
tersectiorandArea Also, for presentation purpose, we per-
form two queries in Steps 6 and 7, but they may be com-
bined into a single query for efficiency.

Complexity. Steps 1 to 4 takeD(M) times. The
worst case of Step 6 need§ Mn) times and Step 7 needs
O(Mn) times. Thus the complexity of the algorithm is
O(M + Mn + Mn) = O(Mn). In practice, many effi-
cient spatial join techniques based siordering trees and
R-trees [18] can significantly improve the cost of evalua-
tion.

whereR; is the set of tuple$T7;, p;) returned by an IMRQ
for S;.

Metrics for quantifying the quality of answers exist for
other queries like nearest-neighbor and SUM, and readers
are referred to [3] for more details. Also notice that the
quality defined here depends on the location data of users
being queried. Next, we present quality metrics due to the
uncertainty of the query issuer herself.

5.2 Quality Due to Query Imprecision

Recall from the Evaluation Phase that the answer to
5 Quality of Imprecise Queries IMRQ is in fact the union of the answers to the sub-queries
(with rangeC/(u, v)), executed over the uncertainty region
of the query issuef;. Out of these range queries, only one
query itself, an imprecise query returns probabilistic an- 'S COTect. The union operation can potentially produce in-
swers. In this section we try to answer the question: how COTrect answers (called false positives in [16]), due to the
ambiguous is an answer? We investigate the notion ofqual-ImIorecISIOn of _the location ,Of the query ISSuer. Here we
ity of imprecise queries, which can serve as a hint for the PréSent & metric for computing quality of an answer due to
query issuer on whether she should adjust the degree of hef1® uncertainty of the IMRQ.
location uncertainty. There are two types of quality metrics: Let us assume that each sub-query returns a set of an-

i swersQ)’ . Also, suppose there are distinctive re-
one due to the inexactness of data, and the other one due Qs g?(lu’v) R, forF;FI)I the sub-queries. LeR; be

Due to the inherent imprecision in location data and the

the ambiguity of the a query. the set of identities returned by IMRQ, and thizs =
Ure, Ri k- Letp(R; ) be the probability thaR; ; is the
5.1 Quality Due to Data Imprecision true result. Them(R; ;) is also the probability that usé;

gets the answeR; ;:

The first factor that produces answer uncertainty is the (Rs k):/' 1
ambiguity of cloaked I.o.catlon data. This ambiguity is re- ’ (1,0) €U (A R; =@ (u,0) AreaU;(t))
flected by the probability of the query answer. Here we ) , ) , )
modify the metric for probabilistic query range queries de- that is, the integration of uniform pdf over all points
scribed in [3, 13]. in ,,ffi(t) that evaluate the same result; ;. Note that
For example, for an IMRQ, the result is the clearest if 2 k=1 P(Rik) N 1. . .
we are sure thai; is either completely inside or outside the We also define thprecisionof 12 with respect tof?; ;, as
query rangep; equal to 100% and 0% respectively. Uncer- |Ri
tainty arises when we are less than 100% sure whether the V(Rix) = |R7»| (8)
location ofS) is inside the query range. This corresponds to '
the case when the uncertainty regionsgf i.e.,U;(t), only where V(R; ;) indicates the amount of “impurities” in-
lies partially insideS;’s query range. The most ambiguous jected toR, , assumingR; ., is the correct answer. Note
case happens wher is 0.5 i.e., S; has a half chance of thatV(R; ;) varies from 0 to 1, with a higher value indicat-
being inside the range. Hence a reasonable metric for meaing a higher precision.

dudv  (7)

suring the quality of an answer duepgis: Thequery scoreof IMRQ can then be measured by
lp; = 0.5] ) Query score folS; = Zp(Ri,k)V(Ri,k-) (9)
0.5 k=1

The value of Equation 5 varies betwegto 1, with a larger which varies between 0 (lowest quality) and 1 (highest
value representing a better quality. We can definedtita quality). To understand this metric, let us look at Fig-
scoreof an IMRQ as the average of the values evaluated in ure 5, which shows three distinct answers for query issuer



the query with a smaller uncertainty region means reusing

_ o R11={S2,S3) the results of a subset of sampling points over the uncer-
¢ p(Ri1)=0.4 tainty region. Hence the server may be able to compute the
o V(Ri1)=112 new query incrementally.
¢ Ri={S3} B )
: /\o/((RR:,zz))j-/i . Ri(S,s.sg O Experimental Results
' ¢ p(R13)=0.3
o V(Ri3)=3/4 We have performed an extensive simulation study on the
L ) behavior of location cloaking. Here we present the simula-
R: = {S,,53,54,55} tion model, followed by experimental results.
Figure 5. lllustrating the query score of IMRQ. 6.1 Simulation Model
| Param | Default [ Meaning I
City Simulator parameters
S1, and also the probability thaf; yields each of the an- bW 5,000 | Location update rate (Se€)
swer (i.e., the fraction ol/;(¢) that yields the answer). Tstare | 0.15 Start threshold
Since S; is located at only one point if/;(¢), only one Trin 0.09 Fill threshold
of the three answers is correct. Suppdsgs is correct. Tempty | 0.5 Empty threshold
Then its precisiorV/ (R, 3) is 3/4, sinceS, is a false pos- Nob, 100 # of moving objects
itive. The valuep(R; 3) is the probability thatS; gets Nretaz | 2000 Max samples skipped before recording
the answerR; 3, which is 0.3. The query score of this Location clqaking parameters
IMRQ is thus the weighted sum of tHE(R; ;,)’s, that is, r 150 Radius of query _
1 1 3 _ ’ Ui(t).r | 20 Radius of uncertainty region
04-3+03-1403-2=0.5. o 9 Sampling size
Implementation of Query Score. Similar to the trans-

formation phase of IMRQ, the query score is computed by

first getting M sampling points fronv;(t). The query re- Table 1. Parameters and baseline values.

sults of the range query for each of thé points are then

grouped according to their query answers. Equation 7 is  Our experiments are based upon data generated by the
then simply equal to the fraction of a total &f points that City Simulator 2.0 [12] developed independently at IBM.
share the same set of objects in their query answers. Due tarhe City Simulator simulates the realistic motion §f;;

the limitation of space, we omit the algorithm details. people moving in a city. The input to the simulator is a map
of a city. We used the sample map provided with the simu-
5.3 Managing Answer Quality lator that models a city of siz&0 x 1260 square units, with

71 buildings, 48 roads, six road intersections and one park.

The answer quality metrics allow a user to trade-off pri- Each building is three-dimensional and contains a number
vacy for a potentially better answer quality. In particular, of floors. The simulator models the movement of objects
the query score depends on the size of the uncertainty rewithin the buildings and on the roads and park. To generate
gion — a larger uncertainty region potentially yields more reasonable movement and occupation of buildings, the sim-
distinct answers and lower query scores. Therefore, a lowulator keeps track of two conditions based on parameters
query score indicates that the user may reduce the size ofl r;; and7,,,. The simulator ensures that the fraction of
her uncertainty region and resubmit the query. people at the ground level lies betweBp;; andT.,,pty.

However, reducing uncertainty region size may not im-  Each object reports its location to the server at an aver-
prove the data score, since it depends on the uncertainty ofage rate of\,,. Before recording the simulation results, the
the cloaked location information of other users that cannot simulator enters a warm-up phase, where at mést,.
be controlled by the query issuer herself. To see whether thesamples for each object are generated, or at [Eagt; of
data score is improved as a result of shrinking uncertainty the population are at the ground level of buildings. Next,
region, the server can use the same cloaked location prothe simulator records the location updates of each object in
vided by the user and re-evaluate the query with a smallera trace file, which contains the timestamp of the update and
uncertainty region. The server then suggests to the user tdhe spatial coordinates of the object at that time. The trace
reduce her uncertainty region only if there is an improve- file serves as the data source for our experiments.
ment of the data score. Notice that as the query results are  An IMRQ is generated by randomly choosing a user as
obtained by sampling over the uncertainty region, rerunning the query issuer. The IMRQ has a range of radiugach
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When more sampling points are used, the quality increases
(due to the increase in value pfR; ;) in Equations 7,9).
002 ] The rate of increase drops whéd is larger than 49. We
therefore choos@/ to be 49 in other experiments.

In Figure 7 we see that an increase in privacy value
lengthens the execution time of IMRQ. With a higher pri-

0.025 -

0.015 -

Execution Time(Including Overhead)

0.01

vacy (or uncertainty region of the query issuer), the ranges
0.005 of sub-queries cover a larger area. Thus more objects are in-

Hiser=100 volved in computation, resulting in a higher execution time.

0 T T T T T . . .
0 5 10 15 20 25 | We remark that an IMRQ needs little time to complete in
Privacy Radius our experiments; for example, it takes ordyms for an
Figure 7. Execution time vs. Privacy IMRQ with a privacy radius o025 units.

Quality and Privacy. We investigate the effect of loca-
tion privacy on query score of the IMRQ. Figure 8 shows the

algorithm. tainty region area) increases, the query score drops. This is

The City Simulator is implemented in Java and runs un- because the larger uncertainty region increases the number
der Windows XP. The simulation and cloaking agent pro- of distinct query answers, thereby lowering the query score.
gram is written in C++, and the testbed is run on a UNIX An interesting observation is that the query score does
server. Each data point is the average value over 200 locafot drop linearly. This is due to the fact that the data distri-
tion update cycles. We use the radius of uncertainty regionbution is not uniform. When an object enters a building, it
as a measure of the location privacy of user — a larger ra-can spend some time traveling around different floors of the
dius implies a higher degree of privacy. Since we are inter- building before going out. As a result, many moving ob-
ested in the interaction between privacy and service qual-jects are clustered in a fixed area (buildings) rather than be-
ity, our experiments use the IMRQ’s query score as the pri- ing scattered on roads. As explained before, an increase in
mary metric of quality, the value of which can be adjusted uncertainty region of the query issuer creates more distinct
by changing the resolution of the cloaked location. Table 1 answer sets. When her uncertainty region starts to overlap

illustrates the parameters of the simulation model. a densely-populated region (i.e., a building), a slight expan-
sion of her uncertainty region can generate many different
6.2 Results distinct answer sets, due to the inclusion of many location

data during this expansion. Thus we can see a sharper drop
Quality and Performance. We first decide experimen- ~ atsome regions of the curve. On the contrary, when the un-
tally the number of sampling points for the uncertainty re- certainty region starts to cover the road, the drop is much
gion, M, that gives us the highest quality with the lowest Slower because the population density on the roads is lower.
evaluation cost. Figure 6 shows the results for some com- We also observe the difference in quality when the num-
binations of privacy value, query size and number of users. ber of users varies. In general, for the same privacy value,
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a larger population produces a lower score, since more dis-

tinct answer sets are produced. The reason why the qualit ; ; e : :

for Noy; = 100 is slightly better thanV,,; = 10 when pri- 7 _llz_’rotgctlng Lmkablllty Against Trajectory
vacy is less than 20 is again due to non-uniform distribution racing
of location data. AtV,,; = 10, the query issuer chosen

is located in a denser area than the caseNgy, = 100. Before we can claim that cloaking safeguards location
the quality whenV,,; = 10 than whenN,,;,; = 100. ing the use of trajectories for inferring locations. Suppose

the service provider saves all the cloaked locations it re-
ceived. Also assume the maximum speed of the movement
of the user is known, which can be obtained through the
movement history, the vehicle owned by the user, etc. We
now show that it is possible for the service provider (or at-
tacker) to increase the linkability of a user’s identity with
her locations, even when it has been cloaked by the user.

_ _ Specifically, let the maximum speed of a certain user be
The quality continues to decrease (slowly) when the un-y, = Assume the user sent her last cloaked location at

certainty radius further increases. The dropping rate istime ¢, i.e., U(t,), and then again afteF time units, i.e.,
much slower because the uncertainty region covers most off/ (¢, + T'). Using V.., it is possible to derive the bound
the ObjectS, and so there is not much difference in the an'enclosing the user’s location at t|rtle_~_T (Ca"edmaximum
swer sets. The quality drop is mostly due to the reduction bound, as shown in Figure 10. Even if the user says she
of the pdf at each point in the uncertainty region, and inturn s |ocated somewhere iti(t, + T'), her possible location
the value of Equation 7. Due to space limitation we do not js actually limited within the overlapping region between
show the detailed results here. U(to + T) and the maximum bound, which is smaller than
Quality and Query Size. Next, we study the effect of U(to + T'). The linkability between the user and the loca-
guery size on answer quality. Figure 9 illustrates the re- tions is thus higher than she expected. Notice that this is an
sults: the answer quality increases with query size. With accumulative effect, since the service provider can derive a
a fixed privacy value (uncertainty radius), a continuous in- smaller bound based on the overlapping region. We propose
crease in the query size will not create many distinct an- two techniques, callegatching anddelaying, in order to
swer sets. When the query range has a very large radiussolve this important problem.
(160) compared with the uncertainty radius (20), the query
ranges created will render many similar answers, since the7.1 Patching and Delaying
difference in the queries at different points in the uncertainty
region is relatively small. At a larger radius (30), the rela-  The first idea of preventing linkability from being in-
tive difference between the uncertainty size and privacy is creased is to combine the cloaked locations released in the
smaller than when the radius is 20, and thus the quality is past with the current cloaked location before it is sent. We
lower too. call this techniguepatching Figure 11(a) illustrates this

We can conclude that the query score is sensitive to the
density of the region covered by the cloaked location. If
the region is highly dense, a slight increase in uncertainty
region can reduce the quality significantly. This observation
can be useful to the cloaking agent. For example, it may
advise the user not to further reduce the spatial resolution
of her location if she is in a crowded area.
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user’s identity cannot be traced. Moreover, this renaming is
done while there are at lealsusers in the same zone at the
same time period.

The k-anonymity metric has several problems. First, the
scheme may not be used if there are fewer tharsers in
the system. Secondly, even if there are more thaisers,
they may span in a large area over an extended time period,
in which case the cloaked location can be very large and
cause a severe degradation of service quality. Thirdly, algo-

Ulto+T) \

Vi » X

y rithms using this metric assume a trusted middleware which
(@) (b) collects information from all users. It may present a perfor-
_ _ . _ _ mance bottleneck and face the risk of being compromised.
Figure 11. Linkability protection techniques It is also not clear hovk-anonymity can be applied to non-
by (a) patching, and (b) delaying. anonymous applications, since it measures the anonymity

of a user, while in non-anonymous application the identity

of the user is already known. We suggest the level of pri-

vacy of cloaked location be measured by the the uncertainty
concept. Attime, + 7', in place ofU (to + T'), the region region size and the entropy of uncertainty pdf, independent
U'(to+T) =Ulty) UU(to + T) is sent. The increase in  of the number of users inside the uncertainty region.
linkability due to trajectory tracing, or “loss” of uncertainty As far as we know, few papers study location privacy in
in U(to + T), is thus “compensated” by the inclusion of non-anonymous applications. A recent paper by Gruteser et
U(to), which is assured to be within the maximum bound. al. [8] proposes the idea of classifying a map into sensitive
Essentially, the spatial accuracy of the location is further re- and non-sensitive areas. Further, evesensitive areas are
laxed. Notice that this may cause a degradation in queryclustered into a partition. When a user enters a partition, her
score due to the increase in uncertainty. location updates are not released until she left the partition,

Another technique is based on relaxing the timing re- provided that she had not entered any sensitive area while

quirement, which we termeddelaying. The idea is to  she was inside the partition. In this scheme, iftlsensitive
suspend the request until the cloaked location fits into theareas are close to each other, it is still easy to guess that
maximum bound. As shown in Figure 11(B)(to + T) is the user has entered one of the sensitive areas. In addition,
not sent until aftep; more time units, whed/(to + T) is there is no guarantee that there are enough sensitive areas
guaranteed to be within the maximum bound. The advan-to be clustered. Moreover, service quality is not considered,
tage of this scheme over patching is that the extent of thewhich can be seriously affected due to delay and omission
cloaked location remains unchanged and so the query scoref location information.
is not affected. However, the response time of the query  To our best knowledge, there is no previous work on re-
can be increased due to the delay introduced, which can bgating the effect of location cloaking with service quality.
an important Qua”ty'Of'SerVice parameter in time-critical We proposed in the position paper [5] a framework to bal-

applications. ance the uncertainty injected to a location and quality of
service. Here we study this idea in more detail, and present
8 Related Works a solution for supporting IMRQ, a typical example of non-

anonymous queries.

The idea of cloaking location information has been re-  Another idea for querying private data is to use encrypted
cently proposed by Gruteser et al.[7] for anonymous appli- databases. Recently, Hore et al. [11] discussed a privacy-
cations. In their model, each tuple,y,t) (i.e., location  preserving index for querying range queries over encrypted
(z,y) at timet) is transformed td[z1, x2], [y1,y2], [t1, t2]) data. To the best of our knowledge, these techniques only
where ([z1,25], [y1,42]) is the rectangular area within work for specific query operators. Also, the feasibility of
which (z,y) is found, between the time interviak , t,]. To those schemes depend on the strength of encryption. Our
measure the degree of privacy introduced by cloaking, theymethod does not need encryption and can be easily extended
propose a metric called-anonymity, which measures be- to work with other queries.
tween time intervalt,, 2] the number of users;, at the In [4], the idea of using an uncertainty model to cap-
same spatial vicinity[x1, z2], [y1, y2])- ture the imprecision of moving objects (due to the mea-

Another work that uses thie-anonymity metric is found  surement and sampling error) is proposed. That model is
in [2], where pseudonymous applications are studied. Thea generalized version of the one presented here, where the
authors use a middleware to rename pseudonyms, so that ancertainty can change with time and the pdf within the un-



certainty region can be non-uniform. That paper also pre- [5] R. Cheng and S. Prabhakar. Using uncertainty to provide

sented algorithms for probabilistic nearest-neighbor queries
over different object movement models. In [3], we studied
other types of probabilistic queries, such as range queries
and aggregate queries, and also defined notions of answer
quality for them. The main difference between probabilistic
gueries and imprecise queries is that the information about
the query issuer in probabilistic queries is exact, which may 7]
not be the case for imprecise queries. For instance, in the
imprecise moving range query model, the query issuer’s lo-
cation is uncertain rather than exact. This calls for new eval-
uation algorithms and quality notions for imprecise queries.

9 Conclusions

Location privacy is an important and emerging topic. To
allow a user more flexibility in controlling her privacy, the
idea of injecting uncertainty to sanitize location information
has been proposed recently. However, those schemes diqll
not consider the quality and accuracy of services provided,
and it was not clear how the cloaked information can be [12]
queried. We suggested a framework to connect privacy, in-
formation cloaking and service quality. We proposed impre- [13]
cise queries, which hide the identity of the query issuer and
enable evaluation of cloaked information. We studied an
evaluation algorithm and quality metrics of moving range
queries, and showed how they can be implemented conve-
niently using spatial-database technologies. We performed
an extensive simulation to investigate behavior of the pro- [16]
posed scheme. We also presented techniques to protect link-

ability of cloaked information against trajectory tracing.

There are interesting avenues for future work. We would
like to build a software system for the cloaking agent. We
want to examine how our proposed metric for location (18]
cloaking can be applicable to anonymous and pseudony-
mous applications. We will also investigate other kinds [19]
of imprecise queries such as nearest-neighbor and average

queries.
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