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ABSTRACT

Kuperman, Benjamin A. Ph.D., Purdue University, August, 2004. A Categorization
of Computer Security Monitoring Systems and the Impact on the Design of Audit
Sources . Major Professor: Eugene H. Spafford.

Traditionally, computer security monitoring systems are built around the audit

systems supplied by operating systems. These OS audit sources were not necessarily

designed to meet modern security needs. This dissertation addresses this situation

by categorizing monitoring systems based on their goals of detection and the time

constraints of operation. This categorization is used to clarify what information is

needed to perform detection as well as how the audit system should be structured

to supply it in an appropriate manner. A prototype audit source was designed and

constructed based on the information from the categorization. This audit system

supplies information based on the type of detection to be performed. The new audit

source was compared against an existing OS audit source and shown to have less

overhead in many instances, generate a smaller volume of data, and generate useful

information not currently available.
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1 INTRODUCTION

It is possible to classify computer security monitoring activities in terms of the

goals of detection as well as the timeliness of detection being performed. From

this classification, it is possible to significantly improve upon our understanding

of what characteristics of audit data and audit data sources are necessary or highly

desirable. This document examines this claim in detail and describes work performed

to demonstrate its validity.

1.1 Background and Problem Statement

1.1.1 Background

Since their creation, computing systems have been scrutinized and monitored for

a variety of reasons and purposes. The early systems were expensive to purchase

and operate, motivating the collection of data to be used for performance and billing

measurements. The collected data would be used to detect system problems, allow

for the generation of bills for system usage, measure system utilization, and other

similar behaviors. As these computer systems became more prevalent, they began

to be used for sensitive military and governmental purposes.

In the 1970s, the United States Department of Defense (DoD) became increas-

ingly concerned about security issues associated with the proliferation of computers

handling sensitive and classified information, and therefore increased their exami-

nation of computer audit as a security mechanism [Bac00]. This effort led to the

formation of the DoD Security Initiative of 1977, which produced a series of docu-

ments on trusted systems referred to as the “rainbow series” because of their brightly

colored covers. As described in the Tan Book from the rainbow series, A Guide to
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Understanding Audit in Trusted Systems [US 88], the data collected was to be used

to not only detect undesired behavior, but also to serve as a discouragement in ad-

vance of its occurrence. For the purposes of this paper, we refer to such analysis

as Computer Security Monitoring or CSM for short. By extension, the software

that performs such monitoring is referred to as a CSM system. The data stream

generated by the computing system intended for analysis is referred to as an audit

trail and the individual components as audit records.

Organizations that handled sensitive or classified data were already subject to

security audits in advance of the introduction of computer systems. With the move-

ment of classified data to computer systems, these audits needed to be continued

and extended into the electronic realm. Consequently, organizations were required

to purchase computers designated as trusted systems based on the government spec-

ifications produced by the DoD initiative. As a result, many commercial operating

systems were augmented with audit systems based on the specifications and testing

methodologies described in the Orange Book, Trusted Computer Systems Evaluation

Criteria [US 85], which described the necessary characteristics for auditing and audit

data generation. These audit systems motivated the development of security moni-

toring systems in the government, academic, and commercial sectors. Much of this

work can be described as seeing what could be determined based on the information

provided by the operating system without necessarily augmenting the sources.

Orange Book based systems generate information based on kernel events. This

limits the scope of observation for monitoring systems to also be at the kernel level.

Additionally, the Orange Book specifications only describe what needs to be in the

audit trail, not how the information needs to be represented. This means that a

monitoring system needs to be ported to handle different operating systems’ au-

dit trails, including changes between versions of the same operating system. One

technique that is used to overcome these limitations is to monitor network traffic.

Unfortunately, this requires that the CSM infer what is taking place on the machines



3

based on the traffic seen, and there are techniques that can be used to evade such

systems [PN98].

1.1.2 Problem Statement

There has been an ongoing pursuit of improved CSM systems. Past studies have

indicated that the existing audit systems do not supply all of the data desired by

CSM systems [Pri97]. Recently, there have been efforts to improve the available

data either by embedding the detection system into the monitored system itself

[Zam01, KSZ02] or by adding a new audit data source tailored to the detection

system [CK01]. Recently, there have been attempts to apply data mining techniques

to perform security monitoring [LS98], but these types of systems often discover

non-sensical associations [McH00]. Others assume that the high false alarm rate will

continue and they attempt to apply similar techniques to deal with the large volume

of alerts generated by existing systems [JD02].

While it is possible to develop improvements that impact the general field of

security monitoring, more specific enhancements and observations can be obtained

by considering systems within a narrower operational view.

This paper proposes a categorization of computer security monitoring systems

based on their detection capabilities to better identify and understand the charac-

teristics and requirements of each type of system. This categorization is intended

to augment the current practice of categorizing CSM systems based upon detection

technique.

This categorization can then be used to design and build audit sources that are

supplying information tailored to the specific detection goals of a computer secu-

rity monitoring system. This would reverse the current process of building general

purpose audit sources and then trying to perform security monitoring using that

information. Instead, the audit source can be constructed based on the type of

information that is going to be needed to perform the various types of detection.
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1.2 Thesis Statement

This dissertation describes the work performed to show the validity of the fol-

lowing hypothesis:

It is possible to classify computer security monitoring activities in terms

of the goals of detection as well as the timeliness of detection being per-

formed. From this classification, it is possible to significantly improve

upon our understanding of what characteristics of audit data and audit

data sources are necessary or highly desirable.

For our purposes, significant improvement is going to be shown by considering

the amount of audit information generated, the overhead introduced by the audit

system, and the inclusion of useful information not already part of the audit trail.

1.3 Document Organization

This dissertation is organized as follows: Chapter 1 presents the background and

the thesis statement. Chapter 2 presents past work done to classify CSM systems.

Chapter 3 describes our improvements to existing categorizations. Chapter 4 de-

scribes how the categorization can influence the design and construction of audit

sources. Chapter 5 describes our implementation of a set of audit sources based on

these ideas and compares their performance against an existing general purpose audit

system. Finally, Chapter 6 presents the conclusions, summarizes the contributions

of this work, and discusses directions for future research.
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2 BACKGROUND AND RELATED WORK

Initially, CSM systems were described by the techniques used to decide whether

or not to raise an alarm. As the number of systems grew, various classifications

and taxonomies were produced to group these systems. Most of these focused on

the structure of the system and their basic behavior. This chapter examines the

various types of decision making techniques and the past classifications of CSM

systems. additionally, it discusses the past work in specifying the audit systems that

are present in operating systems.

2.1 Decision Making Technique

Traditionally, CSM systems have been partitioned into two groups based on the

technique employed to determine if an alert should be generated from the audit data.

These two categories are anomaly detection and misuse detection. There is a less

frequently articulated third category called target monitoring that can be considered

a special subcategory of both anomaly and misuse detection.

2.1.1 Anomaly Detection

Anderson

James P. Anderson was one of the individuals tapped by the US government

to examine the issues of computer security monitoring. In 1980, he published the

final report of his study to improve the computer security auditing and surveillance

capability of computer systems for a classified client [And80]. His report noted that

the existing security audit trails were in need of improvement with respect to both

utility as well as data content. He considered as threats any deliberate, unauthorized
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Figure 2.1. Anderson’s general cases of threats against a computer
system. He distinguished the threats based on the authorization
of using the computer facility as well as the authorization to use
whatever data or programs that are of concern. [And80]

attempt to access information, manipulate information, or render a system unreliable

or unusable.

He proposed a grouping of threats based on the attackers’ authorization to use

the computer system as well as their authorization to use a set of data or program

resources (see Figure 2.1). He defined an external penetration as either a outsider or

unauthorized employee accessing a computer system. His internal penetration was

broken down into three subcategories: masqueraders who have proper credentials of

some other user who is authorized to access the data or program resources, legitimate

users who access data or programs that they are not normally authorized to access

as part of their job, and clandestine users who are able to avoid or disable the audit

system. The final category of threat is that of misfeasance where users abuse their

legitimately granted access.

Anderson concluded his report with a development plan including a functional

description and task breakdown of both a surveillance subsystem and a system trace

component. Included are existing and desired data characteristics for the audit

trail and some proposed techniques of analysis. As part of this section of the report,

Anderson discussed the possibility of using statistical anomaly techniques to perform



7

detection based on his hypothesis that masqueraders can be detected by abnormal

time of use, frequency of use, volume of data referenced, or from patterns of reference.

Denning

In 1987, Dorothy Denning published a model of a detection system that could be

used to perform the calculations suggested by Anderson’s report [Den87]. The model

was designed to be independent of any particular computer system, application envi-

ronment, set of vulnerabilities, or types of intrusions. The implementation discussed

and examples presented were based on a prototype of the Intrusion Detection Expert

System (IDES) [DN85] developed at SRI International.

The basis for this model was the hypothesis that “exploitation of a system’s

vulnerabilities involves abnormal use of the system; therefore, security violations

could be detected from abnormal patterns of system usage” [Den87]. To this end,

she introduced the following five statistical models that she claimed can be used to

determine if an anomaly has occurred:

1. Operational Model – The measurement of some metric x in a new audit record

can be compared against a fixed limit, presumably based upon past encounters

of these types of records. For example, x might refer to the number of failed

login attempts within the past 10 seconds.

2. Mean and Standard Deviation Model – The mean and standard deviation for

the past n measurements of metric x are stored (x1, x2, . . . , xn), and a new ob-

servation xn+1 is considered abnormal if it falls outside of d standard deviations

from the mean.

3. Multivariate Model – This is similar to the mean and standard deviation model

except that it is based on the correlations among two or more metrics. For

example, one could compare the number of CPU cycles used versus the length
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of a login session. In theory, this could provide greater discrimination power

over a single variable analysis.

4. Markov Process Model – This model applies only to event counters. In this

scheme, a matrix of state transition frequencies is maintained (rather than

simply the frequencies of state occurrences). A new observation is considered to

be abnormal if the frequency of the transition observed is less than a particular

threshold. This allows for the detection of unusual command and/or event

sequences rather than single event occurrences.

5. Time Series Model – This model uses an interval timer together with an event

counter or resource meter, and takes into account the order and inter-arrival

times of n observations as well as their values. A new observation is considered

to be abnormal if its probability of occurring at that time is too low.

These models of computation have served as inspiration for many of the subse-

quent security monitoring systems including those which were not direct descendants

of the IDES work. This paper still serves as a foundational reference and inspiration

for many of the anomaly detection systems being developed today.

There are a number of potential threats to statistical anomaly techniques that

have been identified over time (e.g., concept drift, the deliberate mis-training of the

detector through slow changes in behavior [LB99]), however these risks can frequently

be mitigated by other techniques.

2.1.2 Misuse Detection

Based on experience building and operating anomaly detection systems, some

types of actions and activities were considered to always be worthy of notice. These

are usually classified under the heading misuse. A misuse detection based system

is generally based on a set of fixed rules used to determine if a particular audit
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event should trigger an alarm. There are three sub-categories of misuse detection

frequently encountered in the literature:

1. Expert System – A set of fixed rules that when violated will generate an alert.

This system supposedly encodes the decision making process of a human expert

in the subject domain into the decision making component of the computerized

system. The MIDAS system was one of the earliest intrusion detection systems

based on an expert system analysis core [SSHW88]. As these systems are

based on modeling a human expert’s behavior, they are limited by whatever

information that a human expert is aware of, including any misconceptions.

2. Signature Matching – A process of looking for pre-specified, exact pattern

matches to be contained within the data under analysis. This could be viewed

as a subset of an expert system; however, signature matching systems are

usually considered separately as they deal strictly with the pattern matching

process and not any other decision making processes. Most virus scanning tools

utilize a set of signatures as part of their detection [HB00]. Similarly limited

by expert knowledge and awareness, it has been noted that not all misuse can

be represented by a simple pattern [Kum95].

3. Policy Violation – This system involves the encoding of a set of administrative

policies into a machine interpretable form. Actions that are being monitored

are compared against this set of policy rules to detect violations or deviations.

Many systems that are designed to handle classified information utilize this

type of system to determine when an operator is exceeding his or her authority.

Examples of such formalized systems of policy specification include the Bell-

LaPadula model [BL73, BL74] and the Clark-Wilson model [CW87, CW88].

Some policies are difficult to model because of unstated assumptions that may

be held by those creating the policy but are not represented in the formal

model.
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Frequently, discussions of misuse detection refer to one or more of the above

as being considered to be the definition of misuse, and the terms are used inter-

changeably (e.g., a description of a system employing signature matching would use

“signature” and “misuse” as if the terms were identical). While one could arguably

consider all of the above to encompass the same set of analysis actions, the differing

nuances of the analysis performed are often useful in understanding the intended

actions of a particular system. For example, an expert system will likely be based

on steps an expert uses to analyze a given piece of data, while a policy violation

system will attempt to convert an audit record into an action that can be compared

against the policy rules. This is an important conceptual distinction even though

both systems may generate alerts on similar input data.

2.1.3 Target Based Monitoring

There are certain events that can always be labeled as an instance of misuse. In

some instances, we can enumerate certain actions that should never be performed

by any user of a specified system. In other cases, we can identify objects on the

system that should never be accessed by any actions whatsoever. Taken together,

these objects or actions are the targets of our monitoring.

Unlike anomaly or misuse based monitoring, target based monitoring is usually

constructed from a set of binary (triggered/untriggered) sensors. These are akin

to system assertions that particular actions should never take place under normal

circumstances. Examples of target based monitoring include the following:

• A machine connected to the network that is not supposed to be accessed by

either insiders or outsiders. This is also known as a “honeypot.”

• System calls that are present in the operating system or system libraries, but

are not invoked by any of the system programs or require prior registration to

invoke.



11

• Files that are being monitored for access, modification, or execution. These

are also known as “tripwires” [KS94].

• Executable programs that are present, and possibly with a tantalizing name,

but are not supposed to be run (e.g., Cliff Stoll’s tripwire programs [Sto91]).

• Replacing some of the standard binaries with alarm triggers, and giving the

original programs new, non-standard names to detect when an outsider is at-

tempting to use a system.

• Directories that are not supposed to be entered.

• Embedding randomized markers (canaries) at the boundary of data buffers to

monitor for overruns [CPM+98,CBD+99].

• Monitoring data passed into buffers for executable code [KS99a,BTS99,TS01].

The described activities are certainly anomalous when compared to normal use. Most

of them are objects that are not supposed to be accessed based on the expressed pol-

icy, and therefore are also misuses of the system when they occur. The important

distinction is that there is never a policy instance where those accesses should go

unnoticed. This means that target based monitoring can be used in instances where

there is no formal policy, nor a known pattern of abuse. Depending on the imple-

mentation, there are sometimes issues with the overhead created by the frequency

of the checks of the tripwires.

2.2 Classifications Based on Structure

As the number of CSM systems grew, efforts were made to survey them and

to construct taxonomies to classify the various systems. What follows are various

groupings of security monitoring systems that have been proposed and used.
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2.2.1 AINT Misbehaving – 1995

A general division of “anti-intrusion techniques” is presented in [HB95] where

these techniques are divided into “six high-level, mutually supportive techniques”

specifically

• Prevention – techniques that prevent or severely reduce an attacker’s chance

of success.

• Preemption – an offensive strike against a possible attacker in advance of an

attack.

• Deflection – redirect an attack from the item being protected.

• Deterrent – increase either the effort needed to succeed, the risk of making an

attack, or reduce the reward for succeeding.

• Detection – determine when and how an attack is taking place and notify the

authorities.

• Autonomous countermeasures – actively take action against an ongoing attack.

These techniques are intended to cover the entire range of activities including those

that are “independent of the availability of a rich audit trail.” Each of these six

techniques will reduce the intrusion attempts being made on the computer system

and are considered to be used in a layered fashion as shown in Figure 2.2. Each

layer of anti-intrusion techniques will eliminate a set of intrusion attempts that

the previous layer allowed through. Preemption takes place outside of the computer

system; detection, deflection, and autonomous countermeasures take place within the

computer system itself; and prevention and deterrence techniques have components

that operate both within the computer system as well as outside of the system.

Only attacks that pass through all layers of defense will be able to access the system

resources.
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Figure 2.2. Halme and Bauer’s layers of anti-intrusion techniques. [HB95]

This paper is one of the few categorizations that classifies items based on the

intended goal of the countermeasure. However, many of these techniques take place

outside of the computer system being monitored and are not intended to model only

electronic behavior. For example, one type of external deterrence is the increase of

penalty for being convicted of unlawfully intruding onto a computer system, another

is the inculcation of people into a different moral framework that is less accepting of

intrusion attempts. Our categorization is looking at computer security monitoring

systems that are performing detection (or other collection of audit data), which

corresponds to their description of detection techniques. However, some systems

might also contain prevention, deflection, and countermeasure components as well.

The authors also discuss how researchers have divided into two “camps” based

on the type of calculation being made in the anti-intrusion techniques, which is

similar to the divisions described earlier in Section 2.1. One group uses attack sig-

natures (corresponding to Misuse Detection) and the other is based on the analysis

of anomalous behaviors (corresponding to Anomaly Detection). They also note that

“intrusion detection products are as yet esoteric and not well designed to work to-

gether with complimentary approaches such as intrusion preventing firewalls.” The
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Figure 2.3. The taxonomy of intrusion-detection systems presented in [DDW99].

categorization we present in Chapter 3 can help identify which systems compliment

another system.

2.2.2 Debar, Dacier, Wespi – 1999

In [DDW99], Debar, Dacier, & Wespi introduce a taxonomy of intrusion detection

systems. By their definition “an intrusion-detection system dynamically monitors

the actions taken in a given environment, and decides whether these actions are

symptomatic of an attack or constitutes a legitimate use of the environment.” They

divide the characteristics into functional and non-functional categories. The func-

tional characteristics are the method of detection, the behavior on detection, and

the source of audit data. The only non-functional characteristic they include is

the usage frequency which they note “is an orthogonal concept” to their functional

characteristics. Figure 2.3 shows how they structured their taxonomy.
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The first division they make is based on a characteristic of the detector – how does

the detector make decisions. This is divided into two categories. The first is based

on performing detection based on the appearance of the audit data. The system is

programmed with knowledge of what attacks look like, and the system searches the

audit data for instances of attacks. The authors note that this is what has tradition-

ally been called misuse detection. The second category includes systems that make

decisions based on analyzing the behavior taking place on the system. These systems

know what normal behavior on the system should look like and generate an alarm

if behavior is seen deviating from this norm. This they refer to as being “detection

by behavior” or what has traditionally been labeled as anomaly detection.

The second criteria on which they make their classification is the behavior of

the system after it makes some sort of detection (regardless of how that detection

was made). They describe two types of responses, the first is to simply generate an

alert or message but do nothing else. This they refer to as being a “passive” system.

The second category is “active” systems that perform some sort of response other

than the generation of an alert. This might included terminating a connection or

reconfiguring the network topology.

The third criteria they use is based on what sources the detection system uses to

collect audit data. They consider two possibilities. The first is that the system uses

some type of host log files. The second possibility is that the system collects and

analyzes network packets. Although this describes the data source, this characteristic

does describe part of the structure of the detection system.

The final criteria used is based on how often the system is run. They consider two

cases; either the system is always running and monitoring the audit data (“continu-

ously monitoring”), or the system must be invoked periodically (“periodic analysis”)

and it analyzes a “static snapshot” of the system state. They consider this to be an

orthogonal issue because it has more to do with how the system is [designed to be]

run rather than how it operates.
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2.2.3 Debar, Dacier, Wespi (Revised) – 2000

In [DDW00], Debar, Dacier, & Wespi present a revised taxonomy which is shown

in Figure 2.4. There are a number of modifications from the earlier version. First,

they change their definition to read “an intrusion-detection system acquires informa-

tion about its environment to perform a diagnosis on its security status ... the goal

is to discover breaches of security, attempted breaches, or open vulnerabilities that

could lead to potential breaches.” The most notable differences include that they

no longer require the system to be observing actions within an environment, but

the environment itself instead; and that the systems are not making only a binary

decision about normal usage, but actively looking for attacks, attempted attacks,

and potential vulnerabilities that might be susceptible to an attack.

They elaborate that detection methods utilize three informational components:

1. Long term information related to the technique being used to detect intrusions;
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2. Configuration information about the current state of the system; and

3. Audit information describing the events that are happening.

They have augmented the audit source location category to include systems that

collect audit information from application log files and IDS sensor alerts. Although

these sources would have likely been contained under their previous divisions, they

chose to make them explicit.

The only new category in the taxonomy is that of “detection paradigm” which

describes, in part, how the detection system interacts with it’s environment. They

describe a “state based” detection system as one that is performing some sort of

security assessment to determine which state (secure or insecure) the system is cur-

rently in. The other category, “transition based,” looks for known events that are

associated with transitions from a secure state to a non-secure state. These assess-

ments are further subdivided based on the type of evaluation that is being performed.

Either it performs a “non-perturbing evaluation” (e.g., reading configuration files)

or it performs a “proactive evaluation” (e.g., actively looks for vulnerabilities such

as the scanner Nessus [Der03]).

2.2.4 Axelsson – 1999,2000

Stefan Axelsson performed a survey of intrusion detection systems [Axe98] that

was later used to develop a taxonomy of the same [Axe00]. He described the taxon-

omy as being based first on “detection principle” and then by “certain operational

aspects.” He noted that often he was forced to attempt to reverse engineer the detec-

tion system to ascertain what the underlying principle was. He stated “often it is the

mechanism that is used to implement the detector rather than the detection princi-

ple itself” that he used to classify the system. Figure 2.5 shows his classification of

the detection principles used.

There are two major categories of detection principle used. The first is anomaly

detection. He breaks this into two subcategories based on how the rules are built.
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The first case is termed “self-learning” where the detection system generates it own

set of rules. This can be done using either time series information to construct

an artificial neural network, or through non-time series data that can be used for

a system that is based on either rule modeling or descriptive statistics. In the

programmed anomaly detection case, there are two categories. The first is detectors

based on descriptive statistics (using either simple statistics, rule based, or threshold

techniques). The second is based on using state series modeling to implement a

“default deny” policy (anything that is not in the set of known state transitions is

considered to be an attack).

The second detection principle is based on using programmed signatures. There

are four subcategories identified, state-modeling (based on either state-transitions

or petri-nets for detection), expert systems, string matching, or simple rule based

systems. This is extremely similar to the subcategories of misuse detection systems

that was described in Section 2.1.2.

The final category of detection principle identified is called “signature inspired”

and is described as being a hybrid system. This system is self-learning and performs

automatic feature selection when presented with labeled instances of both normal

and intrusive behavior.

This taxonomy is based on a pair of orthogonal concepts: anomaly or signature

based detection, which can be either self-learning or programmed. However, in

his survey, he ran across no detectors in the class of signature based, self-learning

systems. (Immunological techniques such as [FHS97] appear to be in this category,

but were not included in the survey.)

The paper includes a second taxonomy based on system characteristics. Fig-

ure 2.6 shows the set of system characteristics used in [Axe00]. Of interest to this

dissertation is the indication that the time of detection should be divided into only

two categories. The labels used are “real-time” and “non-real-time” but these labels

are used to distinguish between systems that can run at the same time as the data

is generated or not. This taxonomy does mention the notion that the data might be
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sent either continuously or in batches, but indicates that this is linked, but not over-

lapping the divisions based on the time of detection. The taxonomy uses structural

characteristics such as the source of audit data, the locus of data-processing, or the

locus of data collection to classify systems.

2.2.5 Kvarnström – 1999

In 1999, H̊akan Kvarnström performed a survey of 17 commercial tools for in-

trusion detection and provided a comparison of these systems to illustrate the state

of current systems [Kva99]. Figure 2.7 shows the various criteria he used when

comparing systems.

These various criteria are collected into groups depending on the type of charac-

teristic described including the following: functional, security, architectural, opera-

tional, and management as shown in Figure 2.8.

Again we see that systems are viewed as being either rule based (misuse detection)

or anomaly based (anomaly detection), get their data from either host or network

sources, and either are passive or active in response to an alarm. This taxonomy does

include a more detailed description of the various components in the field “degree

of interoperability” (although in practice the paper only rates things as “Low,”

“Medium,” or “High”).

2.2.6 CMU Survey – 2000

Allen, Christie, et al. [ACF+00] is a survey of a the field of intrusion1 detection

(CSM) including research findings, commercial and research tools, and market entry.

They present an overview of the current state of intrusion detection in terms of both

the technology that is known and the software that is available on the market.

They note where there are significant gaps and make suggestions as to where the

1They note that there is substantial disagreement over the meanings of the terms “intrusion” and
“attack” especially in regards to detection.



22

Granularity of Data Processing Continuously

Batches at regular interval

Source of Audit Data Network

Host Based Kernel Logs

Network Equipment Logs

Other
Detection Method Rule Based

Anomaly Based

Response to Detected Intrusions Passive

Active

System Organization Centralized

Distributed

Security High

Low

Degree of Interoperability Exchange Audit Data

Exchange Security Policies

Exchange Misuse patterns or stat. info. on users

Exchange alarm reports and event notifications

Manageability

Adaptivity

System and Network Infrastructure Requirements

IDS

Figure 2.7. The comparison criteria for detection tools used by
Kvarnström [Kva99].
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Figure 2.8. The grouping of comparison criteria used in Kvarnström [Kva99].

field might next proceed. They include a discussion of the problems that modern

organizations experience as related to the deployment of intrusion detection software.

They conclude with a set of recommended next steps for research sponsors, users,

vendors, and researchers.

Figure 2.9 contains the comparison criteria used. Again, we see that the organiza-

tion is based on the method for analyzing data, the type of response to an alert, and

the structural characteristics. This taxonomy does not classify the systems based on

a timeliness characteristic.

One of the observations presented is that existing security monitoring systems

are unable to detect many types of intrusions (or attacks) in their early stages –

something that would be vital in building a system designed to minimize the damage

caused. Another set of observations presented is that current intrusion detection

(CSM) systems provide little or no support for damage recovery, or for forensics,

but in the authors opinions, they could provide such support. A third point raised is
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Figure 2.9. The comparison criteria for detection tools used in the
CMU report [ACF+00].

the “bandwagon effect” wherein corporations look at the offerings from their peers

and competitors and look to provide something similar or slightly better (i.e., no

motivation to try to create something different from the existing offerings).

They also discuss that tools to manage audit data are lacking. They note that

“storing raw real-time audit data for retrospective ID analysis may require imprac-

tically large storage capacities.” This seems to support the notion that the data

needed for retrospective and real-time detection posses different characteristics.

2.2.7 MAFTIA – 2001

Another taxonomy of detection systems was published by IBM in 2001 [ACD+01]

as part of the MAFTIA project. This taxonomy is intended to describe detection

systems by characteristics (but not necessarily the underlying algorithms used) yet

also “aims at describing the capabilities that result from the algorithms used” be-
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Figure 2.10. The view of system activities taken by MAFTIA [ACD+01].

cause they “describe the criteria an IDS has to meet in order to detect a given

attack, or more generally, to process activities observed.” Figure 2.10 shows the way

in which MAFTIA views activities on a system. Part of MAFTIA is a taxonomy

of attacks classified by the activity initiator, the interface objects, and the affected

objects which are connected by some sort of dynamic activity that is classified by

the invocation method, the type of communication, and other attributes. They use

activity scopes for creating general descriptions which can become more specific. For

instance, the affected object might be generally described as “host,” more narrowly

“environment,” and specifically as the “system registry.” Or the communication

might be described generally as “networking,” which can be more specified as “ap-

plication” then the protocol “HTTP” and finally the version “HTTP 1.1”. The

taxonomy is focused on these categories of objects and protocols because it uses

such information to determine what attacks an IDS is capable of detecting based

on the type of information it is collecting. Therefore the first set of classification

rules they apply are based on the structure of the detection engine and the sensors
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Figure 2.11. The classification of systems based on structure as per-
formed in MAFTIA [ACD+01].

as shown in figure 2.11. The “activity scope independent attributes” for detection

engines and sensors are shown in figures 2.12 and 2.13, respectively.

MAFTIA is one of the few taxonomies to try to describe time delays in more

concrete terms than either online or offline. However, they use arbitrary divisions for

delay that are rooted in current processing speeds and expectations, an assumption

that will likely need to be revised as computer systems continue to increase in speed

and processing power.

2.2.8 Zamboni – 2001

As part of his doctoral dissertation, Zamboni [Zam01] presents a classification of

existing computer security monitoring systems based on the structure of data gen-

eration and analysis (distributed or centralized) as well as a classification based on

the data analysis structure and structure of the data collection mechanisms (direct

or indirect subdivided by host or network based). Although the classification sys-
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tem used makes no reference to time, the dissertation presents an architecture that

appears to support real-time detection in terms of our proposed terminology.

2.2.9 SecurityFocus.Com – 2003

For a modern understanding of how general practitioners partition the space of

detection systems, we look at a two part article on terminology used in Intrusion

Detection published by the security portal SecurityFocus. In [Cuf03a,Cuf03b], the

author lists the following types of detection systems:

• Application IDS which use signatures for specific applications rather than

being concerned with operating system level messages;

• Consoles which are used for reporting and management from detection sys-

tems as well as other data sources;

• File Integrity Checkers that compare file permissions and hash values against

an existing database of information;

• Honeypots which present an attractive target and can be used to collect

information on what attackers are doing;

• Host-based IDS that monitor system event logs for suspicious activities;

• Hybrid IDS that use both network node IDS and host IDS in a single software

package;

• Network IDS that monitor all traffic on the network segment where deployed;

• Network Node IDS that collect data from the end hosts of a network con-

nection (rather than the network backbone itself);

• Personal Firewall which they consider to be another term for a HIPS system;

• Target-Based IDS which they describe as being ambiguously defined, but

utilize examples that are similar to what is described in section 2.1.3;
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• Network Intrusion Prevention System (NIPS)/Inline IDS which are

firewalls that use IDS signatures to allow or deny network traffic;

• Host Intrusion Prevention System (HIPS) which is software that decides

if a particular host should accept or reject each inbound connection; and

• Attack/DDoS Mitigation Tool that is designed to block DDoS attacks as

far upstream as possible to maintain the availability of bandwidth.

For a majority of systems, they are still being classified by the structure of the

system, specifically where they collect data from. There are instances of niche tools

that are identified by their function rather than form (file integrity, DDoS mitigation

tools, etc.) but they are the exception rather than the rule.

2.3 Summary

Past classifications of computer security monitoring systems have been focused

on the following 5 things:

1. What type of data classification is taking place, anomaly or misuse?

2. Does the system operate online or offline?

3. Where does the data come from, host or network?

4. Is the structure for the sensor(s) and detector(s) centralized or distributed?

5. Does the system do anything else for response other than generating an alert

message?

Other than a few entries in [Cuf03a,Cuf03b], no taxonomy attempts to describe the

systems based on the type of activity that is to be detected. Timeliness of operation

is usually only discussed as being online or offline with occasional descriptions of the

delays involved.



30

2.4 Audit

Part of this dissertation covers the generation of a new audit source. This section

reviews the current audit trail specifications and their predecessors.

2.4.1 TCSEC

In the 1980s, The United States Department of Defense published a set of com-

puter security standards known as the Trusted Computer Security Evaluation Crite-

ria (TCSEC) as a set of manuals each detailing a particular aspect of the evaluation

criteria. Each manual’s cover was a distinct color, leading to the practice of referring

to a particular volume by its color instead of proper name. (Collectively, the TCSEC

manuals are referred to as the “Rainbow Series” for the many colors present.)

The Orange Book [US 85] is the best known volume from the TCSEC documen-

tation. This manual covers the various requirements that a system must meet to be

able to be certified at a particular level of trust. These levels are referenced by a

letter-number combination ranging from the lowest category, D – Minimal Protec-

tion (for systems that fail evaluation), to A1 (Verified Design) with the upper limit

left open for future expansion. The Orange Book details the criteria a system must

have to be certified at each level as well as the manner in which evaluation must

take place to determine if a system meets the criteria.

Any system that is intended to pass this criteria must contain an audit system.

The Tan Book (A Guide to Understanding Audit in Trusted Systems) describes

in detail the requirements and rationale for such auditing facilities. It offers the

definition that “The audit process of a secure system is the process of recording,

examining, and reviewing any or all security-relevant activities on the system” and

indicates that the text is intended to help guide manufacturers on the design and

incorporation of audit mechanisms into their system as well as suggestion how to

effectively use such audit capabilities. Additionally, it describes what should be
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recorded, how the audit should be conducted, and what protective measures should

be applied to the audit resources.

The general goal of audit within the context of these military documents is to

“assure individual accountability whenever mandatory or discretionary security pol-

icy is invoked” specifically in “systems that are used to handle or process classified

or other sensitive information” [US 88]. The Tan Book also contains a list of explicit

goals for security audit mechanisms:

1. To allow the review of patterns of access (on a per-object and per-user basis)

and the use of protection mechanisms of the system.

2. To allow the discovery of both insider and outsider attempts to bypass protec-

tion mechanisms.

3. To allow the discovery of a transition of a user from a lesser to a greater privilege

level; for example, when a user moves from clerical to system administrator

roles.

4. To serve as a deterrent to users’ attempts to bypass system-protection mecha-

nisms.

5. To serve as yet another form of user assurance that attempts to bypass the

protection will be recorded and discovered, with sufficient information recorded

to allow damage control.

There are explicit descriptions of the requirements for performing the required au-

diting functions for each of the levels of evaluation enumerated within the TCSEC.

In December 2000, at the 16th Annual Computer Security Applications Confer-

ence, the Orange Book (and by implication, the rest of the Rainbow Series) was

retired and given a formal wake to mark its passing from the United States national

policy. Although no longer considered to be a current document, the TCSEC re-

mains a strong influence in the design and implementation of computer operating

systems.
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2.4.2 Common Criteria

In June 1993, the US, Canadian, and European computer security criteria orga-

nizations (TCSEC, CTCPEC, and ITSEC) began work on creating a single unified

specification which became known as the Common Criteria for Information Technol-

ogy Security Evaluation (CCITSE). Version 1.0 was released in January 1996. After

extensive external review and trials, a revised Version 2.0 was released in May 1998.

This version was adopted as an international standard in 1999 (ISO 15408). A num-

ber of minor changes were made as a result of the ISO process leading to a revised

Version 2.1 specification which was adopted in August 1999. [Com,CCI99,Nat03]

The CCITSE is not a set of specifications for systems, rather it is a framework

in which specifications for trusted computer systems can be drafted and a set of

evaluation criteria for the evaluation thereof. In the development and construction

of a trusted system, first a Protection Profile (PP) must be written. A Protection

Profile provides a set of security requirements that a consumer (possibly a customer

or software developer) to use to create a set of standardized security requirements

to meet their needs. They may need to select more than one PP to meet all of their

desired criteria.

Here is what the CCITSE has to say about auditing:

“Security auditing involves recognizing, recording, storing, and analyzing

information related to security relevant activities ... The resulting audit

records can be examined to determine which security relevant activities

took place and whom (which user) is responsible for them.”

It further defines a section for the generation of audit data called FAU GEN. This

family is described as the following:

“This family identifies the level of auditing, enumerates the types of

events that shall be auditable by the TSF, and identifies the minimum

set of audit-related information that should be provided within various

audit record types.”
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The only specification made in the CCITSE itself is that there are two levels of the

FAU GEN family, FAU GEN.1 and FAU GEN.2. FAU GEN.1 which requires the

specification of the “level of auditable events, and specifies the list of data that shall

be recorded in each record.” At level FAU GEN.2 those events must be associated

with individual user entries. Protection Profiles must detail the actual contents based

on the above requirements.

In response to the release of the Common Criteria, the National Security Agency

(NSA) has produced two protection profiles that are conversions of the TCSEC

requirements into the CC language: Controlled Access Protection Profile (CAPP)

[Age99a] corresponding to C2 ratings and Labeled Security Protection Profile (LSPP)

[Age99b] corresponding to B1. These two profiles are currently the most frequently

used profiles for evaluation of operating systems.

2.4.3 BS 7799, ISO 17799

Outside of the United States’ military and security community, the most fre-

quently recognized document is British Standard 7799 [bs799a,bs799b] (introduced

in 1995, revised in 1999), which describes various aspects of information security

management. (This was fast-tracked into an ISO standard 17799 within the same

year as the release of the revision.) It begins with a justification of information

security and the document covers a wide range of topics including physical secu-

rity, writing policy, personnel, access control, system development, and audit. The

requirements specified are of a general nature as they are intended to cover many

areas within the document. In [bs799a], section 9.7 describes the suggested mon-

itoring of system use. It suggests logging of user IDs, timestamps of log-on and

log-off, terminal identity and location (if possible), records of successful and rejected

system access attempts, and records of successful and rejected data and other re-

source access attempts. They also suggest monitoring (but not necessarily logging)

authorized accesses, privileged operations, unauthorized access attempts, and sys-
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tem alerts or failures. This document is similar to that of the Common Criteria, in

that it attempts to provide advisory checklists and frameworks without supplying

great amounts of detailed requirements.

2.4.4 Current Implementations

Most modern commercial operating systems including Solaris, HP-UX, AIX,

IRIX, and Windows 2000 have been evaluated against the CAPP or LSPP (or the

C2 and B1 TCSEC equivalent) and therefore provide an audit system that meets

those requirements. There are a number of attempts to provide a similar audit

functionality to the open source Linux operating system [sal03,sna03,scs03, lin03] in

varying states of development, but none surveyed are currently incorporated into a

mainstream distribution.
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3 MODEL OF CLASSIFICATION

As described above, CSM systems are currently described by the technique employed

in the detection phase; anomaly, misuse, or target, along with other characteristics

such as location of data collection and location of data analysis.

These systems (especially research proposals or prototypes) are also self-identified

based on the type of decision model employed leading to paper titles that end in de-

scriptions such as “... using Autonomous Agents” or “... based on the X Algorithm.”

The most probable reason for this is that such characteristics were what set them

apart from the rest of the CSM systems, therefore making them worthy of note.

Although there is still a great deal of room for further research based on detection

technique, it would also be useful to have terminology that allows us to discuss the

various systems based on the purposes of the detection being performed, and allow-

ing meaningful comparisons to be made among CSM systems designed to perform

similar tasks.

It is likely that the categorizations discussed in Chapter 2 were structural in

nature because the original projects had a structural focus – the way in which the

CSM system was built was the novel portion of the work. This makes sense if

you consider that such developments were an exploration of a new area. (Also, a

structural approach is a commonly used technique when constructing a taxonomy.)

Consider what might happen if we discovered a new ecosystem on another planet.

The initial descriptions of the discovered life forms would focus on the structural

characteristics of each new creature. How tall are they? How many limbs? What

types of colorations? What sort of internal structures do they have? We would

probably build a classification system based on these structural characteristics to

help us determine if a given specimen was new or not.
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After a period of time, we would have a fairly good idea of the overall structural

types and variances that exist. Then our focus would be more on how these crea-

tures behaved and how the ecosystem fits together. Is this creature a predator? Are

they prey to something else? What sort of behaviors does it have? We would be-

gin classifying things based on the behavioral characteristics such as predator/prey,

colony/solo, hunter/gather and so forth. We would not throw out the existing struc-

tural categorizations, but we would use the behavioral classification systems to help

us augment our overall understanding of the ecosystem. The remainder of this chap-

ter presents our new categorization designed to supplement the existing structural

taxonomies of CSM systems.

3.1 Categorization vs. Taxonomy

Our model is intentionally a categorization instead of a taxonomy. As pointed out

by Krsul [Iva98] and Lough [Lou01] many of the existing “taxonomies” of computer

security systems do not meet all the defining criteria. Borrowing Krsul’s definitions,

a taxonomy is the theoretical study of classification, including its bases, principles,

procedures, and rules. A classification is the separation or ordering of objects (or

specimens) into classes. Krsul presents the following four characteristics that must

be present in the characteristics of a taxonomy:

1. Objectivity: The features must be identified from the object known and not

from the subject knowing. The attribute being measured should be clearly

observable.

2. Determinism: There must be a clear procedure that can be followed to ex-

tract the feature.

3. Repeatability: Several people independently extracting the same feature for

the object must agree on the value observed.

4. Specificity: The value for the feature must be unique and unambiguous.
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What we present is not based on the theory of classification because we have not

attempted to build a system that would allow us to satisfy all four of the aforemen-

tioned requirements. Specifically, we do not present a “clear procedure” from which

a given CSM system could be classified into a category which means that we do not

meet the standard of “determinism.” Secondly, our categories are not designed to

be mutually exclusive, nor are they designed to be all encompassing. This means

that it fails the “specificity” requirement. Rather, we present a set of categories (or

classes) into which a CSM system can fall. However, a given instance of a system

may belong to more than one category simultaneously. While this could be elimi-

nated by factorially expanding the categories to include all possible combinations of

elements, and we could obtain total coverage by including the categories “other” and

“unknown,” such modifications would decrease the utility of the system by adding

in unneeded complexity. Rather than contort the system to meet a higher (and un-

needed) specification, we have opted for a simpler version for the sake of clarity and

utility.

3.2 Goal of Detection

The first way in which we wish to examine existing CSM systems is based on

their operational characteristics. We want to be able to answer the question For

what security purpose is this system monitoring behavior? We propose that the fol-

lowing four categories describe the major areas of focus within the computer security

monitoring field:

• Detection of Attacks

• Detection of Intrusions

• Detection of Misuse

• Computer Forensics
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We will discuss each of these in the following sections. The above list does not

completely cover the range of activities under the umbrella of computer monitoring.

There are certainly other topics such as system “health” monitoring, fault recovery

and tolerance, performance monitoring, system accounting, and so forth; however,

the focus of many of these additional areas falls outside of the traditional scope of

security and thus of this category.1 As mentioned previously, it is possible for a

system to be a member of more than one of these areas.

By subdividing the field of computer security monitoring into different categories

based on the type of detection that is being performed, we gain a more refined set of

expectations regarding the behavior of such systems. With a more carefully described

grouping of systems, we will be able to improve our comparisons and differentiations

between systems by being able to tell if the two are designed to perform similar

functions. Presently, it is not uncommon to see comparisons between systems that

are designed to detect attacks and those designed to detect misuse. Such comparisons

may not make sense as the underlying models of detection may differ widely between

the two. Additionally, the audit information desired may differ significantly. This

section describes the various goals of detection as well as explaining some of the

differences between the categories.

3.2.1 Detection of Attacks

One type of analysis focuses on the detection of attempts to exploit a vulnerability

in a computer system. This exploitation may be through hostile code or a Trojan

horse, programs that deliberately exploit a flaw, intentionally malformed or specially

crafted network packets, etc. We call such CSM systems attack detection systems.

We use the definition of an attack in the sense presented by Anderson [And80] – “a

specific formulation or execution of a plan to carry out a threat.” Thus an attack

is defined by the plan from its inception, to its creation and existence, and then on

1All of the security related components of such monitoring (e.g., performance monitoring for DoS
detection) are contained within our enumerated list.
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through its enactment. Therefore, the goal of these systems are the detection of that

attack at any stage.

The word attack refers to both actions or objects whose goals are to exploit a

vulnerability in a computer system. In the action form, an attack refers to the actions

that attempt to exploit a vulnerability in a computer system. The vulnerability need

not be currently present in the system under attack: It is possible for an attack to

be against a vulnerability that was removed from an older version of the system, or

against a different platform (e.g., an attack against Solaris being sent to a MacOS

X machine). As an object, an attack is a piece of code, data, or some sort of tool

(either software or hardware) whose purpose is to attempt to exploit a vulnerability.

An attack tool (object) performs an attack (action) against a computer system. We

note these two forms of attack detection to allow our definition to include systems

that monitor for exploit attempts as well as systems that look for the existence of

exploit tools.

If the threats of concern to a system are carefully enumerated and sufficiently

expanded, all of the attacks to be detected could be described a priori (at least in

theory). However, this task is generally considered to be infeasible for a computer

system of any size. Therefore, there are some attacks that will only be enumerated

a posteriori. A priori enumeration offers the potential ability to prevent an attack’s

success either by being able to detect it while it is occurring or by being able to

remove a vulnerability from the target system. A posteriori detection capabilities

allow us to go back through existing records once we have identified a new attack

and detect it after it has already occurred.

There is no requirement in our definition for an attack to be successful or unsuc-

cessful. Nor is there a requirement for the existence of the vulnerability for which

the attack is intended to exploit to exist either presently or historically on either the

system under observation or any other system. The definition of an attack exists

outside of any specific computer system (although specifying some of the character-

istics of a computer system may be useful when attempting to identify or enumerate
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attacks). While there is an implication of intent (“. . . attempt to exploit . . .”) this is

an unmeasurable (not directly observable) characteristic, and therefore outside of the

realm of what can be expected to be collected by any sort of electronic monitoring.

However, in many instances such intent can reasonably be inferred.

An attack can be a single instance or a sequence of network datagrams, shell

commands, library or kernel service requests, file system modifications, machine

instructions, hardware modifications, etc. Any sequence or sub-sequence may or may

not be chronologically ordered. There have been some recent attempts to coalesce

individual attack alerts into an single attack scenario [DW01,VS01]. Many of the

existing systems described as “Intrusion Detection Systems” are actually designed

to detect attacks. This is especially true for network based systems.

Frequently, attack detection can be performed without needing to consider who is

causing the attack, or by assigning an attack to a generic external user. For example,

a “ping-of-death” attack [CER96] or a “land” attack [CER97] are network oriented

attacks. Network traffic does not posses the concept of users, and it is not necessary

for these attacks to be bound to a user to be detected. While we could create a

generic outside user to whom we ascribe all unclaimed attacks, this introduces an

extra, unneeded assumption, which might cause later problems. Any attack that

must be bound to a particular user is going to be an instance of either misuse or an

intrusion as well.

We use the term Attack Detection System and the abbreviation ADS to refer

to a CSM system that has a goal of detecting attacks.

3.2.2 Detection of Intrusions

As described in Section 2.1.1, Anderson proposed a categorization of penetrations

based on the intruder’s authorization to use the computer system as well as the data

or program resources being consumed [And80]. We use the term intrusion detec-

tion to refer to the detection of the first three classes of penetrations presented by
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Anderson: external penetrations, internal penetrations (with the possible exception

of legitimate users), and clandestine users. These correspond to the left column of

Anderson’s permission matrix (Figure 2.1) where the subject is not authorized to

use the data or resource in question. These intruders may be accessing the computer

system by one of the following means:

• Gaining the use of services – such as a printer or making calculations

• Accessing data or programs – such as accessing a database or executing a

control program

• Modification of data – including deletion and truncation

The critical condition is that regardless of the type of access occurring, such access

is not allowed by the administrative policy of the computer system. Therefore, an

intrusion takes place only within a particular system because it is dependent upon

that system’s notion of users, resources (computers and networks), and adminis-

trative domains. This is unlike attacks which can exist outside of any particular

computer system reference.

Systems that detect anomalous command usage or other behavior-based profiles

are performing intrusion detection. The various models enumerated by Denning

[DN85] are all based on the detection of this type of threat.

We use the term Intrusion Detection System and the abbreviation IDS to

refer to a CSM system that has a goal of detecting intrusions. It is important to

note that many of the existing systems and categorizations described in Chapter 2

used “IDS” as a generic term. Outside of the descriptions in that chapter, the

acronym IDS is used as described here.

3.2.3 Detection of Misuse

The detection of penetrations described in [And80] but not covered by intrusion

detection (namely misfeasance but also some instances of internal penetrations by
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Setting up subsequent misuse

Bypassing intended controls

Active misuse of resources

Passive misuse of resources

Misuse resulting from inaction

Use as an aid to other misuses

External Misuse

Hardware Misuse

Masquerading

Figure 3.1. Neumann and Parker’s classes of computer misuse. The
diagram represents what they believed to be the typical steps and
modes of computer systems. The leftward branches all refer to mis-
use, while the rightward branches represent potentially acceptable
use.

legitimate users) falls under the category of misuse detection. This is different from

the usage of misuse detection in Section 2.1.2 that described a processing technique

used by CSM systems. Therefore, we will use the phrase “detection of misuse” when

describing the goal of such a system.

Neumann and Parker introduced a hierarchy of behaviors that they considered

to be computer misuse (see Figure 3.1), which was based on their combined personal

experience of handling 3000 cases of system misuse over 29 years [NP89]. They use

the following classes to categorize misuse:

• Improper disclosure of data

• Modification of data

• Denial of service

• Trojan horse

• Playback attacks
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• Misrepresentation

• Impersonation

• Inferences that permit the derivation of unrevealed data

• Failure to act appropriately

Their stated goal was to improve upon the notion that misuse is simply a violation

of the CIA model (Confidentiality, Integrity, and Availability), and were using the

term “misuse” in a generic manner. Generally speaking, the top five classes describe

some type of unauthorized use (and therefore can be considered an intrusion), while

the remaining four describe misuse of legitimately conferred authority.

For our purposes, systems whose goal is the detection of misuse are concerned

with examining the behaviors of users who are authorized to use the computer system

under observation. However, they might might not have been authorized to use

the particular program or data, or perhaps not authorized to do so in a particular

manner. For instance, an IRS auditor needs to be able to access any citizen’s tax

record to do her job. However, she is not supposed to use this access to look up

information for personal use (such as searching for celebrities or neighbors). This

issue is sometimes referred to as the “insider threat,” which was for many years

the most prevalent type of reported security incident. Recent news articles such as

[Mes03] indicate that there is still much concern about the detection of such misuse,

and reports such as [Ric03] indicate that at least 56% of responding organizations

were victims of computer misuse in the past year.

We use the term Misuse Detection System and the abbreviation MDS to refer

to a CSM system that has a goal of detecting misuse.

3.2.4 Computer Forensics

There are instances where the operators/administrators of a computer system

want to reconstruct actions that have already taken place on a computer system.
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Among these would be instances of computer intrusion, misuse, or attack. Of course,

these are not the only reasons. One might also want to verify the authenticity of

a message, keep track of changes made to a system by the administrator, or keep

track of all transactions processed by a given terminal. In some cases such logging

is required by law (e.g., to comply with SEC regulations), and in most it is viewed

as either a deterrent or failsafe against wrongdoing. More specifically, consider the

following two examples:

1. A trading system where information is collected, not to detect attacks, intru-

sions, or misuse, but is kept to be used for higher levels of fraud analysis such

as money laundering; or

2. A system designed to trigger an alarm (without attempting to collect any other

information) whenever a “ping-of-death” packet is observed on the network, or

something that looks for known email worms and viruses in all incoming email.

The first is purely forensic in nature – the information is collected solely for record

keeping purposes, while the second is concerned only with detecting a specific attack

without concern to who was affected, or where the attack originated from.

This attempt to reconstruct the past activity of a computer system is referred

to as computer forensics. Computer forensics seeks to answer a number of questions

including the following:

• What happened?

• When did the events occur?

• In what order did the events occur?

• What was the cause of these events?

• Who caused these events to occur?

• What enabled these events to take place?
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• What was affected? How much was it affected?

It is impractical, if not impossible, to store all of the states of a computer system,

so at best we have a set of snapshots of the state of the system at particular points

in time [FV99]. One way to view computer forensics is that it is the process of

taking these various snapshots and by examining them in sequence, using them to

construct a plausible scenario of events. In general, we cannot divine with complete

certainty which events took place; however, we can frequently collect an amount of

corroborating evidence to either support or refute our hypothesis of what occurred.

In a similar manner, a CSM system using computer forensics might examine

the filesystem on a disk, the audit logs generated by the operating system, alerts

generated by an attack detection system, and so forth to reconstruct a probable

timeline of events along with reinforcement and support for various hypotheses.

Most forensic activities have limitations in either the type of data and events that

can be determined or the relative ordering of those events. For instance, we might

be able to determine that event B occurred, but we know that B depends on an

event A as a precondition. From this we might infer that A probably took place, but

this would be without any sort of direct observation. In other instances, we might

be able to establish that both A and B occurred, but cannot discern in what order

they took place. What is able to be determined is frequently dependent upon what

information sources are made available and how trustworthy their information is.

We use the term Computer Forensics System and the abbreviation CFS to refer

to a CSM system that has a goal of supporting computer forensics.

3.2.5 Differentiation Based on Scope

As noted previously, a system might have multiple security monitoring goals,

that is, it would be properly categorized with more than one of the above labels.

Similarly, a given event on a computer system might be of concern to more than one

type of CSM system. However, the perspective taken would differ greatly depending
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on the goal of the monitoring. The following might describe how each type of system

would view an event where user Alice was logged in from node Wintermute to run

program DataMine to access Bob’s customer record:

• Detection of Attack: Is program DataMine an attack tool? Are the actions

being taken by user Alice part of an attack?

• Detection of Intrusion: Is this really user Alice logging in? Does she nor-

mally login from node Wintermute at this time? Does she normally run pro-

gram DataMine? To access Bob’s record? Is she allowed to access that program

or data?

• Detection of Misuse: Is Alice supposed to running program DataMine?

Is she supposed to be accessing Bob’s customer record? Has she run other

programs that make running DataMine a policy violation? Has she accessed

other records that make accessing Bob’s records a policy violation?

• Computer Forensics: What is happening on the system? Where is node

Wintermute? Who is using the account called “Alice” and where is she located?

What program is being called by the name DataMine? What part of the

database is being accessed by the label “Bob’s customer record” and where is

it being stored? What changes happen as a result of this action?

Imagine a set of four very focused researchers pouring over an audit trail. Each

researcher has a hypothesis that she is intent on either proving or disproving. They

each will have a different set of information that they consider necessary, useful, and

extraneous. Any event that they view will be colored by their single-minded goal

allowing them to apply a specialized perspective on the data that might be different

from how others see it. A given CSM system might have more than one of these

goals without needing them to be separate entities. A real-world example of this type

of perspective is a teacher evaluating a student’s book report. You could imagine

that there are two separate graders, The first is reading the paper to see if proper
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grammar and style were used. The second is examining the content regardless of the

mechanics looking to see if the facts are correct and that a valid argument is being

presented. The fact that there is only one physical grader does not mean that they

cannot have more than one goal.

The next sections examine the differences in perspective that exist between the

various goals of detection and the difference in audit data requirements.

Detection of Intrusions vs. Detection of Misuse

Intrusion detection attempts to detect masqueraders or others that gain unau-

thorized access to the system. The detection of misuse is concerned with determining

if an authenticated user is abusing their authority without regard to whether this is

the “actual” user controlling the account or not. Intrusion monitoring might not be

concerned with which files are accessed during a given session, but the detection of

misuse would be. Intrusion detection is asking “Is this user allowed to access this

system?” and “Is this actually the user they claim to be?” while a MDS believes

this user to be who they claim, but wants to know “Based on the existing policy,

should this user be doing these actions?”

Detection of Intrusions vs. Detection of Attacks

An ADS might be content to only examine the payload of network packets, but

an IDS would be concerned with where the packets come from or how the system

is responding to them. Additionally, attack detection need not include the notion

of “users” which is a fundamental component of intrusion detection. Although an

ADS can operate without the notion of users, one could imagine that there is a

generic, unspecified user performing all of the unattributed events. This is func-

tionally equivalent to having such events not attributed to a user. However, an

IDS cannot operate without having a notion of users, and in fact, would require a

category for an unknown or unauthenticated user.
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Detection of Intrusions vs. Computer Forensics

Although there are many similarities between the types of data being examined,

there are some differences between the interpretive focus of these systems. Intru-

sion detection looks more at actions without concern for their consequences, while

computer forensics is also concerned with the results of such actions. An IDS is de-

termining if these actions are being performed by an authorized user – in some cases,

even an unordered list of actions would be acceptable. However, a CFS is going to be

collecting information that can be used to determine which events preceded others,

especially if it will be used as a support to a causality inference.

Detection of Misuse vs. Detection of Attacks

In most instances, an attack is a type of misuse. However, an attack can come

from outside of a computer system and therefore may not be tied to any particular

user. Also, the detection of misuse is concerned with non-destructive data access

(e.g., file reading), which generally would be of no concern to attack detection. For

example, the detection of a phf exploit [AUS96] would be handled differently by

each type of system. The ADS would be looking for possible attack strings without

consideration of their eventual effects. However, a MDS would be concerned with

the results of a successful attack (i.e., the misuse of the system by the web server

account) and may not consider why the user is misbehaving (i.e., because of an

attack).

Detection of Misuse vs. Computer Forensics

These two groups are the most similar in comparison. Both are attempting to

understand what sort of behavior is taking place on the system. Computer forensics

is less closely tied to the notion of users, although both are concerned with what

action has taken place and are interested in knowing who was performing the actions.
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However, a MDS needs the system policy to make decisions, while a CFS will possibly

take the system policy as one more piece of data to analyze. In terms of audit data,

computer forensics has stricter time and ordering requirements than what can be

used for the detection of misuse, and will collect information that is part of legitimate

system use to allow it to be analyzed.

Detection of Attacks vs. Computer Forensics

Computer forensics involves examining a much broader range of issues than attack

detection. Computer forensics is concerned with not only what attack took place

(although it can function without this information) but also with the after-effects

of such attacks as well as normal, non-malicious behavior. Attack detection has a

much more narrowly focused scope of activity observation, specifically, deciding if

each action or object is an attack. It does not need to determine who was attacking

or what effects the attack had (although in many cases that information would be

considered useful).

3.3 Timeliness of Detection

The second feature that we use to characterize CSM systems is the timeliness of

the data processing, measured by the time between data generation to its correlation

and the raising of alarms. The rate at which the monitoring occurs is dependent

upon several factors including the following:

• Efficiency of audit data generation

• Efficiency of the correlation technique

but should be independent of the following:

• Rate of event occurrence

• Underlying hardware architecture
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The goal is to create a timeliness specification that can exist independent of a specific

hardware platform or operating system and describes systems able to operate at a

particular level of performance given some minimal set of computing power and

above. Additionally, it should not have any caveats requiring proper behavior of

users or differing behaviors based on the homogeneity of data sources. In other

words, the timeliness specification should be applicable to both active and quiescent

systems and apply regardless of whether security related events are occurring or not.

In the early publications on CSM, one of the unobtainable (though desired)

goals was the ability to perform “real-time” detection. At the time, the overhead

of data generation, network latency, and processing speed of the analysis engine

limited the performance of the implemented systems. This led to many of them

being run on a dedicated host with audit data collected from the systems of concern

and delivered at the end of a day or a week. As the speed and power of computing

systems improved, the time period between data generation and analysis was reduced

to a point where detection can take place as the system is operating. Historically,

the literature describes this simultaneous data generation and processing as taking

place “in real time.” Unlike past discussions, we will be introducing a stricter set of

definitions for the timeliness of detection.

It is common for a CSM system to be able to be configured to operate under

more than one timeliness category. In this case, such a system has multiple modes of

operation, and our categorization can be used to describe either the range of modes

a system is capable of or the current behavior of such a system.

3.3.1 Notation

When discussing the time constraints of CSM systems, we will be using the

following notation and assumptions. The operation of a computer system can be

considered to be an ordered sequence of events that take place on the various ma-

chines and networks that make up the system. An event may be considered to be
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any activity or state transition such as the signaling of an interrupt, invocation of a

command, termination of a process, transmission/reception of network data, and so

forth depending on the level of abstraction being used. A subset of these events are

of concern to our security monitoring schemas and a subset of that describes those

events for which we wish to generate alerts. As this detection is generally thought

of as the detection of malicious or undesired behavior, we refer to these as “bad

events.” We recognize that some of these events do not carry any sort of negative

connotation (e.g., forensic data) but will use this term as it allows us to employ a

simpler mnemonic in the discussion that follows.

The set of events that can take place on a computer system is represented by the

set E. For a set of events E that can take place on a computer system, there exists

a subset of bad events B such that

B ⊆ E

and there exists events a, b, and c such that

a, b, c ∈ E

b ∈ B

We use the notation tx to represent the absolute time of the occurrence of event x.

This measure is based on some external observation reference point and is indepen-

dent of the local measurements of time. This allows us to ignore the issue of clock

synchronization for the purposes of our discussion. While this permits us to maintain

a certain degree of simplicity for our model, this should not be taken as in anyway

minimizing the importance of clock synchronization within a computer system (ei-

ther single- or multi-machine). See [Mil91] for a discussion of clock synchronization

and a possible solution.

We use the notation x → y to indicate that y is causally dependent upon the

occurrence of x, meaning that event y cannot occur until after event x. Unless
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otherwise noted, we will assume that the dependence of the events in question will

take place in alphabetic order, namely

a → b → c

which implies that the absolute times are similarly ordered

ta < tb < tc

This indicates that event b cannot occur before a takes place, and both a and b

are preconditions for c. However, this relationship does not indicate that a causes

either b or c to occur, merely that b and c cannot occur without a having previously

occurred.

We also define a detection function D(x), which represents the determination of

the truth of the statement x ∈ B by the CSM system. Ideally, we would like to

be able to evaluate D(x) from the knowledge of the membership of B. This would

indicate an ability to pre-determine what all of the “bad” events are (the a priori

enumeration discussed in Section 3.2.1). Unfortunately, in most implementations,

the membership of B is determined based on the output of D(x) as D(x) represents

the detection capabilities of the CSM system, which is the converse of our ideal case.

In part, this is caused by the difficulty of enumerating the membership of set B in

advance and the complexity of the possible states and events of a modern computing

system. Furthermore, false positives are instances where an event x is not actually

a bad event, but does trigger an alert from the CSM system.

False positive: x /∈ B, D(x) = true

Similarly, false negatives are instances where x is a bad event, but the CSM system

fails to classify it as such.

False negative: x ∈ B, D(x) = false

Using this notation, we now present four categories of timeliness that a CSM

system could be operating in: real-time, near real-time, periodic, and retrospective.
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3.3.2 Real-Time

Real-time detection takes place as the system is operating. Originally, this meant

that detection occurred concurrently with the data generation. However, we further

restrict the limits such that the detection needs to occur before any of the events

logically dependent on the bad event take place. This can be represented by the

ordering

ta < tD(b) < tc

or alternatively in interval notation

tD(b) ∈ (ta, tc) (3.1)

indicating that the detection of the bad event takes place after any precondition

event, but before any dependent event. Our usage of “real-time” is intended to be

much stricter than the historical usage that implied that both data generation and

processing were happening simultaneously. Our real-time restrictions allows for a

CSM system to make a guarantee of detecting a bad event before the subsequent

events instead of simply making a “best-effort” attempt to process the information.

3.3.3 Near Real-Time

A near real-time detection system detects an event with membership in B close

to when the event occurs, but does not guarantee as tight a bound on when the

determination takes place as compared to real-time detection. Specifically, the de-

tection of the bad event b occurs within some finite time δ of the actual occurrence

of the event. Using the notation described above we stipulate that

∣

∣

∣tb − tD(b)

∣

∣

∣ ≤ δ (3.2)

which can be represented in interval notation as

tD(b) ∈ [tb − δ, tb + δ]
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This indicates that detection need only take place within δ of the actual event, either

before or after, and not necessarily before any causally related events take place. In

current CSM systems, δ would be on the order of seconds or possibly minutes.

While it might not make intuitive sense that detection of b can occur before b itself,

consider the case of network attack detection using a passive sniffer where the sniffer

is located upstream from the victim machine. In this case, it is possible to detect a

malicious packet on the wire before it is delivered to the end host.

It has been suggested that we are not concerned with how far in advance the

detection of b takes place, leading to the expression

tD(b) ∈ [−∞, tb + δ]

While we are not opposed to having the detection take place as early as possible,

having an unbounded upper limit might be used as a justification for the generation

of false positives, because one could argue that the alerts that were generated might

occur at some time in the future.

3.3.4 Periodic (or Batch)

In periodic detection systems (or batch analysis), blocks of records are submitted

to a CSM system once every time interval rather than the on-demand, per-record

basis that the previous two techniques likely employ. The time length of the interval

is commonly on the order of minutes or hours (although a low number of days would

not be unheard of). If we assume that records are delivered every interval of length

p then we would like

tD(b) ≤ tb + 2 ∗ p (3.3)

The 2∗p limit is based on the fact that there may be a delay of duration p in sending

the indicators of bad event b, and that we want our CSM system to perform the

detection before the next batch of records are delivered, which will happen in another

interval of duration p. In a worst case scenario, the event b will occur immediately
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Figure 3.2. A graphical representation of the reason for the upper
bound limit on a periodic CSM system.

after the last batch of records was sent to the CSM system and will not be sent

until time tb + p. The next batch of records will be sent after another interval of p,

which would be the time (tb + p) + p, and we want the decision D(b) to be made no

later than that time. See Figure 3.2 for a graphical illustration of this requirement.

If the CSM cannot process the audit data at this rate, then as long as audit records

are being continuously generated, the CSM will have an ever-increasing backlog of

records to examine. This can exhaust the CSM space resources potentially causing

the CSM to fail.

Generally, anything that delivers audit records via a file or over a non-local

network connection will be in this category.

The fact that the upper limit is represented by 2 ∗ p means that the audit data

must be transmitted or polled twice as often as the guaranteed time. In other words,

to ensure that detection takes place within 4 minutes of an event, the CSM must

operate with a period of 2 minutes.

3.3.5 Retrospective (or Archival)

Retrospective (or archival) detection generally takes place outside of any partic-

ular time bounds. These systems are frequently designed to operate on non-“live”

data or data from the operation of a computer system at a previous point in time

(i.e., not data reflecting the current state of the system). As a result of this con-
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Table 3.1
A chart summarizing the various time constraints needed for each of
the various temporal categories a CSM system might be a member
of.

Real-time tD(b) ∈ (ta, tc)

Near real-time
∣

∣

∣tb − tD(b)

∣

∣

∣ ≤ δ

Batch tD(b) ≤ tb + 2 ∗ p

Retrospective Unconstrained

dition, retrospective systems cannot depend on being able to make queries of any

systems, especially as the systems that generated the data might no longer exist.

Many of the CSM systems designed to operate under the previously discussed

time bounds are able to be used in a retrospective mode. If it is possible to simulate

the arrival of audit data, or specify a file or database containing such data to be pro-

cessed, then it logically follows that the system can be fed recorded data. However,

there may be additional considerations that need to be applied to the data genera-

tion and recording steps to enable such processing to take place later (e.g., relative

timestamps, self-contained data references, usernames as well as user ID numbers,

and so forth). Much of the research on data mining for CSM utilizes features that

can only be generated after the entire session is complete (e.g., average value per

session), not simply a running measurement. Archival systems have the advantage of

being able to look ahead in the data stream to see if there is support for a particular

hypothesis, giving such systems additional analytical power.

3.3.6 Summary of Timeliness

Table 3.1 summarizes the various constraints based on timeliness introduced in

this section. In Section 3.4 we will examine examples of security monitoring systems

from each of these categories.



57

Table 3.2
This table provides a cross-reference to the relevant portion of the
text where the systems are explained.

Type of Detection

Timeliness Attack Intrusion Misuse Forensics

Real-Time 3.4.1 3.4.5 3.4.9 3.4.13

Near Real-Time 3.4.2 3.4.6 3.4.10 3.4.14

Periodic 3.4.3 3.4.7 3.4.11 3.4.15

Archival 3.4.4 3.4.8 3.4.12 3.4.16

These timeliness bounds can be used to determine the degree of interaction that

needs to take place between an audit source and its CSM consumer. A CSM system

that is designed to perform real-time detection will likely need to be able to directly

interact with the data source to possibly suspend the execution of the system or

process until an audit record can be processed, while an archival system will view

the system as a one-way diode-like universe (either producing or consuming data

without any interaction in the opposite direction).

3.4 Examples (Matrix)

By combining the two classification categories described in Sections 3.2 and 3.3

as axes, one forms a matrix of sixteen different types of computer security monitor-

ing systems. In this section we will present illustrative examples of each and then

describe the differences that exist among the varying groups. Table 3.2 indicates in

which section each cell of the matrix is described.
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3.4.1 Real-Time – Detection of Attacks

Real-time attack detection systems possess the characteristic ability to detect an

attack or malicious code either right before delivery or immediately after impact. A

widely available example would be that of a TSR anti-virus scanner. This software

resides in memory examining every binary program that is about to be executed and

searches it for known viruses (attacks) [HB00].

3.4.2 Near Real-Time – Detection of Attacks

Near real-time attack detection systems must detect an attack within a short

interval of its occurrence. Many current systems that claim to be an “Intrusion

Detection System” are based on network monitoring using a promiscuous network

interface looking for attacks and are therefore in this category. Snort [Roe99] and

NFR [NFR01] are instances of this type of system.

3.4.3 Periodic – Detection of Attacks

Periodic attack detection systems will either periodically review activity records

(e.g., tcpdump logs) or scan storage areas in search of malicious code or other in-

dicators of attacks. The scanner portion of most anti-virus software [HB00] will

periodically examine mounted filesystems for known malicious software and infected

programs. Similarly, there were a number of shell scripts designed to periodically

detect Code Red attacks on webservers (e.g., [Car01b,Asa01]).

3.4.4 Archival – Detection of Attacks

Archival attack detection systems sieve through collections of audit records look-

ing for traces of an attack. In 1998 and 1999, DARPA hosted an “Offline Intrusion

Detection Evaluation” in which entrants sifted through collections of network data

looking for a variety of attacks [LFG+00,HLF+01].
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3.4.5 Real-Time – Detection of Intrusions

A real-time intrusion detection system needs to be able to detect intruders before

they are able to actually utilize their access. Most software systems that perform

authentication are instances of such a system, as an intruder would not possess

the proper characteristics or credentials and therefore be detected as an intruder.

For example, SSH stores known public keys of remote machines and performs a

verification during a connection to detect man-in-the-middle attacks [The02,SSH02].

Similarly, biometric systems can use a thumbprint or other biometric measure to

identify the legitimate user and detect impostors [JHP00].

3.4.6 Near Real-Time – Detection of Intrusions

Near real-time intrusion detection systems will determine if a particular user

is unauthorized (masquerader, etc.) by examining the audit trail created shortly

after events take place. Systems that attempt to perform user identification through

anomaly analysis of command sequences (e.g., [LB97]) fall into this category.

3.4.7 Periodic – Detection of Intrusions

A periodic intrusion detection system collects its input data at regular intervals

and determines if any of the observed actions are coming from an unauthorized user.

Distributed collection/centralized analysis software that performs user profiling (e.g.,

UNICORN [CJN+95]) will be of this category if the audit data is sent in batches

instead of being part of a continuous stream.

3.4.8 Archival – Detection of Intrusions

Archival intrusion detection systems analyze collected audit data and attempt to

determine which actions (if any) indicate that an unauthorized access of the system
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has taken place. Many of the user profiling programs can operate on archival data

as well (e.g., [Sma88]).

3.4.9 Real-Time – Detection of Misuse

A real-time misuse detection system monitors the various user behaviors and

actions that take place on a computer system and compares them against a given

policy. It does so for each action as it occurs to enable the detection to take place in

real-time. Janus [GWTB96] is one example of such a system. Janus uses the Solaris

debugging facility to intercept all system calls performed by an executable. These

are then compared against a policy file to determine their acceptability. If found to

be in violation, either the call is prevented, an alert is raised, or both.

3.4.10 Near Real-Time – Detection of Misuse

Near real-time misuse detection systems perform similar comparisons of activi-

ties against specified policy; however, they frequently do so by reading system gen-

erated audit data instead of by direct observation. Polycenter [Dig94] and Hewlett-

Packard’s IDS/9000 [Hew01] are both instances of this type of detection system.

IDS/9000 collects a variety of system audit data and passes them into a correlator,

which performs the needed comparisons and generates alerts for violations.

3.4.11 Periodic – Detection of Misuse

Periodic misuse detection systems operate by either periodically reading a col-

lection of records from log files, or by periodically receiving data from remote hosts.

As with all misuse detection systems, these records are examined to determine if

any sort of policy violation has occurred. Early versions of ISS RealSecure [Int01]

on certain hardware platforms collected system audit records and, when polled, sent

those records to an analysis machine. Another example is the syslog monitoring
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programs that are run once a day via a cron job in most Linux distributions such as

LogWatch [Bau02] or LogCheck [Psi02].

3.4.12 Archival – Detection of Misuse

An archival misuse detection system is designed to analyze stored records of

computer usage and examine them for evidence of unauthorized activities. In some

instances, these systems need meta-information on the audit records such as user

ID to username mappings and system version information. According to Bace, the

early detection systems constructed in the 1980’s were designed to operate on both

batches of audit records as well as archived stores [Bac02]. Another common system

of archival misuse detection is the fraud detection software employed by credit card

companies to detect card theft and abuse [CFPS99].

3.4.13 Real-Time – Computer Forensics

A real-time computer forensic system needs to be able to collect forensic infor-

mation as an activity is occurring. This information would be related to the who,

what, when, and why of the activity in question. An example of such a system is

Carrier’s Session Token Protocol (STOP) [Car01a]. In STOP, when an incoming

TCP connection is made, the operating system attempts to recursively track down

the source of the connection to the originating machine and user across all inter-

mediate machines. All activity for the connection request is suspended until the

information has been collected.

3.4.14 Near Real-Time – Computer Forensics

Near real-time computer forensic systems collect information as it is being gener-

ated by the system. The FBI’s DCS1000 software (a.k.a. Carnivore) [Fed01] collects

digital information as part of a passive electronic wiretap. It is collecting the data
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shortly after it has been generated and transmitted, but without an intervening

storage stage.

3.4.15 Periodic – Computer Forensics

Periodic forensic systems collect computer system information after regular inter-

vals. For instance, Tripwire [KS94] can be used to periodically analyze a file system

and detect any unauthorized changes to files or directories.

3.4.16 Archival – Computer Forensics

Archival computer forensic tools make up the most common category of forensic

software. These programs frequently take a computer system as a whole or ma-

jor subcomponent thereof as input for analysis (e.g., filesystem, raw disk, memory

dump). These tools construct timelines of activity, detect file modifications, at-

tempt to recover deleted information, and so forth. The Coroners Toolkit [FV99]

and Encase [Gui01] are two of the better known examples of such software.

3.5 Summary

In this chapter we presented two categories that can be used to describe CSM

systems based on their design goals. The scope of monitoring for a system can be

described as being the detection of attacks, the detection of intrusions, the detection

of misuse, or computer forensics. The timeliness of detection describes how long it

takes for a “bad” event to be detected by a CSM monitoring system. Our divisions

of real-time, near real-time, periodic, and archival are much more descriptive than

the traditional labels “online” and “offline.”

We identified instances of all sixteen categories that are formed by using these

two categories as axes for classification. This indicates that our categories describe

existing systems.
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Table 3.3
A summary of the sixteen different categories of CSM systems that can be described based on the charac-
teristics of “Goal of Detection” and “Timeliness of Detection.”

Real-time Near real-time Periodic Archival

Attack Detect an attack before

any of the effects from the

attack occur.

Detect an attack within a

short interval of its occur-

rence.

After the audit data has

been sent, detect an at-

tack before the next batch

of data is sent.

Detect an attack based on

stored audit data.

Intrusion Detect an intruder before

they are able to affect sys-

tem resources.

Detect an intruder within

a short time of their ac-

cessing a computer sys-

tem.

Detect an intruder within

one interval period after

audit data has been sent

to the CSM system.

Detect an intruder based

on stored audit data.

Misuse Detect someone violating

system policy before they

are able to perform any

other actions.

Detect someone violating

system policy shortly af-

ter the violation takes

place.

Detect someone violating

system policy within one

interval period of audit

data being sent to the

CSM system.

Detect instances of policy

violation after-the-fact.

Forensics Collect information on

system activities before

any following activities

take place.

Collect information on

system activities within a

short interval of their oc-

currence.

Collect information on

system activities periodi-

cally.

Reconstruct system ac-

tivities (possibly from a

non-live system).
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One way that this categorization improves upon current practice is that it allows

for a better comparison of systems. By grouping CSM systems according to scope of

monitoring, systems that are intended to have similar behaviors can be more easily

identified and compared amongst one another. Additionally, this classification helps

establish metrics with which to measure such systems because their purpose and

timeliness of operations are more clearly articulated.

Another useful outcome is for the ability of an organization to determine if they

have selected CSM systems that will give them the desired security coverage. When

deciding which systems to use, one can look to the type of detection each CSM sys-

tem is providing and select from among them to give the desired coverage. Consider

an instance where a corporation has a mandate to use a CSM system that provides

both attack and intrusion detection, which will be deployed throughout the com-

pany. The accounting division might have additional requirements involving misuse

detection and can augment their detection coverage by selecting a misuse detection

system to use as well. Another instance might be where the organization’s security

policy requires redundant systems for detection. By using our categorization, such

an organization might see that to obtain adequate two level coverage, they would

need to deploy more than two systems as the CSM systems each might only cover

part of the desired space.

Requirements for security are generally “non-functional.” An example would be

the requirement for the “detection of misuses of the system.” Our categorization im-

proves this situation by describing more functional requirements for the timeliness

behavior and how delivery of the data can be made and measured. It is important

to note that our current categorization does not specify content, only parts of the

delivery structure. The location of the data generation components and other re-

quirements would drive content specifications. However, this categorization can also

assist in the writing of such content specifications.

Our categorization also allows us to address the deficiencies in audit data spec-

ifications by re-examining them based on the intended end usage of the data. By
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knowing for what the data is going to be used, new audit sources can be built that

supply data tailored to one or more of our detection goals, with a delivery architec-

ture that may support one or more timeliness categories. This allows us to reverse

the traditional practice of building CSM systems to consume existing audit data

and instead build better sources of audit information.
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4 SPECIFICATIONS OF AUDIT SYSTEMS

In this chapter, we explain how the categorization of CSM systems helps the deriva-

tion of specifications for audit systems.

Again, we look at this issue from two complementary perspectives: the goals of

detection and the timeliness of detection. The goals of detection influences what

data should be collected in terms of content. The timeliness of detection describes

how that data should be collected and stored along with influencing what additional

information might need to be collected.

4.1 Types of Audit Records

Consider a generic computer system and the possible auditable events that can

occur within that system. Table 4.1 lists some of those events and the data associated

with them.

Table 4.1: Events that may possibly be audited in a
generic computer system, and some of the data that could
be associated with those auditable events.

Identification and Authentication

• password changed • terminal used

• failed login events • login type (interactive/automatic)

• successful login attempts • authentication method

• terminal type • logout time

• login location • total connection time

• user identity queried • reason for logout

• login attempts to non-existent accounts

(continued)
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OS operations

• auditing enabled • change in privilege

• attempt to disable auditing • change in group label

• attempt to change audit config. • “sensitive” command usage

• putting an object into another users memory space

• deletion of objects from other users memory space

Successful program access

• command names & arguments • wall time elapsed

• time of use • files accessed

• day of use • number of files accessed

• CPU time used • maximum memory used

Failed program accesses

Systemwide CPU activity (load)

Systemwide disk activity

Systemwide memory usage

File accesses

• file creation • failed file accesses

• file read • permission change

• file write • label change

• file deletion • directory modification

• attempt to access another users files

• attempt to access “sensitive” files

Info on files

• name • group

• timestamps • permissions

• type • label

• content • physical device

(continued)
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• owner • disk blocks

User interaction

• typing speed • mouse movements

• typing errors • mouse clicks

• typing intervals • idle times

• typing rhythm • connection time

• analog of pressure • data sent from terminal

• window events • data sent to terminal

• multiple events per location

• multiple locations with events

Hardcopy printed

Network activity

• packet received • port opened

- protocol • port closed

- source address • connection requested

- destination address • connection closed

- source port • connection reset

- destination port • machine going down

- length

- payload size

- payload

- checksum

- flags

Not all of these events are going to be necessary for every type of security mon-

itoring. If we examine each group of events, we can see that audit systems that

are designed to support a single type of monitoring will be supplying different audit

records and different data with those audit records.
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Table 4.2
Audit events related to identification and authentication

Identification and Authentication

Password changed MF

Failed login events AI F

Successful login attempts IMF

Terminal type IMF

User identity queried AIMF

Terminal used IMF

Login type (interactive/automatic) IMF

Login location IMF

Authentication method I F

Logout time IMF

Total connection time I F

Reason for logout AIMF

Login attempts to non-existent accounts AI F

We can label these events based on the type of CSM consumer that would be

interested in them. We have done so with a subset of these events in Tables 4.2

through 4.5.

4.1.1 Identification and Authentication

These events are related to the actions and records generated when a user logs into

the system establishing a session. The events that are useful to an ADS are those

related to failures to properly authenticate. As most of these events are directly

related to both user identification and authentication, an audit system supplying

information to an IDS would be generating these various records. This information
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is essential in establishing the current user identity on the system and the details

regarding the type and location. An IDS needs most of this information as these

events have to do with user identification and authentication, both of which are

essential to the establishment of user identities and authorization. Data that is

useful to an MDS comes from actions that take place after a user has authenticated

herself to the system as the system cannot determine if a user is violating policy until

after she has been identified. Information related to the location from which a user

is connecting from would be useful to both IDS and MDS systems as such may be

indicative of either an external penetrator or someone accessing the system remotely

from an unauthorized location. All events are useful for a CFS and therefore would

be generated and transferred.

4.1.2 OS Operations

The events in Table 4.3 occur within the kernel or operating system of the com-

puter system. In contrast to the above, most of these events would be meaningful to

an ADS because they are security related and have the potential to escalate privilege,

violate the confidentiality or integrity of information, or impact other processes. The

events that would be useful in detecting an intruder are those that involve changing

either the identity or group label, and those events relating to attempting to invoke

a restricted or sensitive operation. The former are important as they will result in

a change in system identity, and the latter are important in that use of sensitive

commands can help identify a masquerader. It is probable that the system policy

will have rules addressing the use of these system events, so they should also be

recorded for use in an MDS. Again, all of these events would be useful in some way

to a CFS.
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Table 4.3
Audit events related to OS operations

OS operations

Auditing enabled F

Attempt to disable auditing A MF

Attempt to change audit configuration A MF

Change in privilege AIMF

Change in group label AIMF

“Sensitive” command usage AIMF

Putting an object into another users memory space A MF

Deletion of objects from other users memory space A MF

Systemwide CPU activity (load) A MF

Systemwide disk activity MF

Systemwide memory usage A MF

Table 4.4
Audit events related to program access

Program access

Successful program access AIMF

• command names AIMF

• time of use IMF

• day of use IMF

• CPU time used AIMF

• wall time elapsed AIMF

• files accessed AIMF

• number of files accessed IMF

• maximum memory used AIMF

Failed program accesses IMF
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Table 4.5
Audit events related to file accesses

File accesses

File creation MF

File read MF

File write MF

File deletion A MF

Failed file accesses IMF

Permission change IMF

Label change IMF

Directory modification MF

Attempt to access another users files AIMF

Attempt to access “sensitive” files AIMF

4.1.3 Program Access

The events in Table 4.4 pertain to both successful and unsuccessful execution

of programs. An ADS is going to be interested in successful program execution

events and information regarding the behavior of that program such as files accessed,

resources used, and so forth. The use, and attempted use, of programs has been used

as a technique to establish the identity of the person controlling a particular session.

An IDS can use information on what programs a user attempted to access (including

when access was denied) and how that program behaved. Similarly, this information

can also be used to verify a user is using authorized resources properly.

4.1.4 File Accesses

The events in Table 4.5 are related to various sorts of operations on files on

a computer system. Most of these actions would not be useful in the detection
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of attacks except for file deletions and accessing files belonging to other users or

otherwise described as “sensitive.” File accesses that are noteworthy to an IDS

include those that change the permissions or labels on files as well as attempts to

access files belong to others. All of these events would be useful to a MDS because

they relate to the behavior of the user. Most of these events are successful attempts,

and misuse is based on authorized users abusing that authorization.

4.1.5 Audit Content Summary

In this brief example, we have shown that the set of audit records that should

be generated for the various forms of detection are not identical. The type of con-

tent that is generated by an audit system should be selected based on the goals of

detection that it intends to support. In Section 4.3 we discuss some of the broader

concerns for audit sources tailored to meet the specific goals of detection.

4.2 Timeliness

As discussed in Chapter 3, the type and amount of data that an audit system

generates may be highly dependent upon the time frame in which the CSM system

is designed to operate. In some implementations, too much data may be counter-

productive as this may supply more data that can be adequately handled within the

desired timeliness bounds. However, a conflicting requirement exists in that much

of the information is ephemeral to varying degrees and if it is not reported, it might

not be available for analysis later.

Volatility

Farmer and Venema give an example of items with differing volatility in [FV99].

While they are specifically discussing computer forensics, the issues of volatility they
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raise are still relevant in other security monitoring contexts. Specifically they rank

the following items of a system from most volatile downward:

• Registers, peripheral memory, caches, etc.

• Memory (kernel, physical)

• Network state

• Running processes

• Disk

• Floppies, backup media, etc.

• CD-ROMs, printouts, etc.

One of the issues in data collection is the fact that the act of collecting information

often causes incidental modification of the system itself, possibly compromising the

data. For example, generating an audit record and sending it out to an analysis or

storage system will cause changes in registers, CPU cache, memory of the current

process, kernel state changes (both in process tables and device drivers), network

buffers, and the generation of a number of packets of network data that might affect

ARP tables and other similar structures This is not a problem that can be solved

through a recategorization of systems, and therefore outside of the scope of this

dissertation. However, it does affect the specification of an audit system in that if a

CSM system requires some of the more volatile information, then the audit system

must be designed in such a way to capture that information first, and in a manner

that does so without disturbing other information that needs to be recorded.

System State Changes

Another consideration that must be made involves the data representation and

the inclusion of meta-information along with the required audit data. Consider an
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audit record that includes the process ID of the parent process, and assume that the

CSM system requests additional information on that process. As time progresses

from the initial record generation, the CSM system risks that the information might

no longer be available, for instance the parent process might terminate. Further, it is

also possible that a later query for information might return valid information that

refers to something other than what was desired. For instance, if the parent process

ID was X, a query for information about that process might return information

about a different process that happens to have the same PID at the time that the

query is made. The information is valid, and the response to the query returns what

is requested, but does not return the information that was intended. needed This

has impacts both the type and amount of information that is included in an audit

record. All information about the state of a system is subject to change over time,

and the longer the interval between audit record generation and CSM query, the

greater risk of not getting the desired information. Consequently, the amount and

detail of information that is included will depend on the mechanism and timeliness

of the audit source and the CSM consumer.

More ephemeral information needs to be recorded versus simply being available.

For example, given a data buffer in a real-time system, the information regarding

where the buffer is located might not need to be recorded. However, the information

would need to be recorded if it is to be used in systems operating in other than

RT mode as it is highly unlikely that such information will still be available for a

query. Additionally, the longer the interval (or for archival purposes) more details

should be included in the audit records. In an archival system, the audit trail should

include not only the UID value, but also the mapping from UID to username if that

information is going to be used. UID to username mappings are generally stable, but

after a period of time, there can be many changes and information can either be lost

or reused, for instance as might happen on a university server between semesters.



77

4.2.1 Real-Time Detection and Levels of Abstraction

Recall that in section 3.3.2 the definition of a real-time CSM system is one that

operates under the condition that

tD(b) ∈ (ta, tc)

where the detection of the “bad” events takes place after the predecessor events, but

before consequent events. It is also necessary for each of these three events to occur

in distinct time intervals that are separate from each other. The implication of this

is that

Insight 1 Precursor and consequent events must exist in groups that are mutually

exclusive with respect to the events under analysis at the level of abstraction currently

being audited.

For instance, if the execution of a program both causes the bad event to oc-

cur as well as subsequent actions, then real-time detection could not take place by

monitoring events at the program execution request level of abstraction.

The events on a computer system can be viewed at different levels of abstraction

representing different levels of granularity in the audit trail. The finer the granular-

ity, the greater the number of events and audit data are generated by the system.

Sometimes by changing the level of abstraction at which audit data is generated,

an audit system can support real-time detection or not. So, in the instance of a

program that both causes the bad event and the subsequent effects, we can design

an audit source that can supply information at the proper level of abstraction such

that real-time detection can take place.

Similarly, the granularity can be made finer to the level of program lines, machine

instructions, or CPU cycles. One of the side effects of using finer granularity is that

there are more audit records being generated. In Table 4.6, you can see that by

moving from a coarse level (such as program execution) to a finer grained level (such

as library calls), the number of events begins increasing. Were the resolution to
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Table 4.6
A table showing how an event can be broken down into sub-events
depending on the level of abstraction.

Program Shell System Call Function Call

1. prog. execution 1. prog. start 1. exec(program) 1. .init()

2. prog. end 2. syscall1() 2. main()

3. syscall2() 3. libcall1()

... 4. libcall2()

... ...

n. exit() m. fini()

be taken down to the level of CPU cycles, then a current computer system would

be generating in excess of 1,000,000,000 audit records per second. While finely

grained audit records would guarantee that each event occurs in groupings that

are mutually exclusive, the volume of data generated would overwhelm most CSM

implementations unless they were designed for this type of data or specifically needed

such information. Consequent events are not allowed to occur until after analysis has

taken place. Therefore, using an unneeded level of detail in audit data generation is

wasteful of resources (time, CPU, storage, etc.) and should be avoided. This leads

to our next recommendation for the design of an audit system:

Insight 2 Granularity of audit should be made finer [only] until such point that the

events to be observed occur in mutually exclusive groups.

While this statement is not a requirement, it should factor in as a design principle

when constructing audit systems. It is especially relevant for audit systems designed

to support real-time CSM systems.
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(5) Signal completion

(6) Request next

(4) Processing

(3) Audit Record

(2) Record ready

(1) Event

CSMAudit SourceComputer System

Figure 4.1. Steps needed for the communication between an audit
source and a CSM to perform real-time detection.

Handshaking

If we assume a generic audit event at the appropriate level of abstraction, then

figure 4.2.1 represents a model of the communication that needs to take place between

the various components in an audit system. The operating system generates an event

and either sends information of that event to the audit system or the audit system

collects the information from the OS itself (path 1). From there, the audit system

can optionally signal the CSM to indicate that an audit record is ready to send

(path 2). When ready, either the audit source sends the audit record to the CSM or

the CSM reads the audit record from the source (path 3). As the CSM processes

the record, it may generate one or more additional events that feed back into the

CSM system either for further processing or storage until a final decision has been

made (path 4). Examples of generated events include correlated/coalesced events,

alerts, timer information, and so forth. When ready for the next record, the CSM

optionally signals the audit source (path 5). If a CSM uses polling, then paths 2, 3,

and 5 are collapsed into the polling read that the CSM makes of the audit source.

In many cases, the only paths that are present are 1, 3, and 4.

To ensure that real-time detection can take place, there needs to be a guarantee

that no subsequent event takes place before the end of processing a given event,
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including meta-events, completes (i.e., path 4). There are two ways in which this

can take place.

1. The operating system blocks all further execution until it receives an acknowl-

edgement signal (path 6); or,

2. The audit source and CSM guarantee that steps 2–5 can be traversed before

the next possible event can take place (step 1).

In the first instance, by blocking further execution we guarantee that no further

events occur, therefore allowing detection to take place in whatever timespan is

needed by the particular CSM system. We are arbitrarily delaying tc until after

tD(b) is known to have occurred to successfully meet our definition.

The second solution incorporates what might be described as “hardware real-

time” in that it more closely reflects the behaviors that take place in “real-time

systems.” Frequently, such systems utilize a set of timers and known operating

times for routines to guarantee that an event or set of events will take place within

a known amount of wall-clock time. If we assume that we are operating with audit

records corresponding to system calls, that our CSM system operates independently

of the system being monitored, and that the time it takes to process a system call

request and context switch is 50 msec, then steps 1–4 must be guaranteed to take

place in less than 50 msec. If we can make such a guarantee, then we can operate

without needing to have the back-channel path 6.

This second approach ties the CSM system much closer to the underlying hard-

ware in that the same code will have differing execution times depending on the

underlying speed of the system. It is possible that a system that is operating in

real-time might not be able to function in that manner if the hardware is modified

requiring careful attention to hardware detail when constructing the system. For in-

stance, adding a new network card might increase the length of time spent handling

interrupts, or an increase in memory size might increase the latency of data accesses.
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There are some modern audit sources that communicate state with the operating

system. One example would be Hewlett-Packard’s Intrusion Detection Data Source

(IDDS) [Hew00,CK01] which has a “blocking” mode of operation in which the system

will stop processing events that generate audit data whenever the IDDS output

buffers are full. This suspends operations until the data consumer has time to read

the next block of records. However, this system only uses the signaling between the

audit source and the operating system – it does not have any indication whether

the CSM system has processed any particular record, only that the audit source’s

output buffer is no longer full.

The relative speed and computing power of both the system generating audit

records and the system on which the CSM is located are important. To ensure real-

time operation, the CSM must be able to consume audit records at a faster rate

than the audit system can generate them. The difficulty of guaranteeing sufficient

computing power becomes much harder when there is distributed data generation

but centralized analysis. Also, CSM systems that are passively monitoring events,

such as a network sniffer, may not be able to observe all of the events that are

occurring.

One technique that has been used to mitigate the problem of differing CPU re-

quirements is to have both the audit source and the CSM share the same computing

resources, but with the CSM running at a higher priority. As more audit records are

generated, the CSM has more work to do. Because of the higher priority, the CSM

consumes more of the available computing time resulting in fewer events occurring

and fewer audit records to be generated. However, this technique is ineffective in

instances of passive monitoring.

Other issues in real-time audit systems include:

1. Buffering: If path 1 uses buffered I/O, then it is possible that event c might

have occurred before the buffer was written to the audit record. Similarly, if

path 3 is buffered, then the audit source might not have sent the record on to

the CSM until after event c occurs. This buffering might skew any guarantee
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of detection time enough that a real-time system will be transformed into a

near real-time system or even a periodic system with a low period interval.

This is of concern when a system is under high load as such a situation cause

a significant degradation on system throughput and performance.

2. Granularity: Deciding the correct granularity is difficult. If a CSM is only

using part of the event reported as an audit record, then it might not be able

to make the detection before the consequent events take place.

3. Where data is collected: As discussed in [Zam01] the location of audit data

collection elements is important in the effectiveness and type of data collected.

For instance, if network data is collected in user space, but an attack is launched

that affects the network driver, it might not be possible to ever see event b. Or

consider the instance of a land attack [CER97] where the audit source can see

the packet containing identical source and destination IP addresses (event b),

but may never see the subsequent event c because the network stack is sending

the RST packets to itself through internal channels.

4.2.2 Near Real-Time Audit Systems

Recall that near real-time (NRT) computer security monitoring takes place under

the restriction that the detection of an “bad” event occur within some δ of the

occurrence.

∣

∣

∣tb − tD(b)

∣

∣

∣ ≤ δ

One of the goals of NRT system design is to keep the value of δ to a reasonably small

value. This translates into an audit system designed in such a manner that it makes

a best effort attempt to get the data out as quickly as possible.

The idea is to collect the necessary information and then any other related infor-

mation that can be expediently included. There may not be sufficient time to perform

translations between binary and printable formats, nor to perform transformation
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from numeric values to an expanded representation. For instance, in the case of an

audit record with a UID, there may not be time to perform a lookup of username

from the ID number, nor might there be justification to delay the generation of the

record. Similarly, a process ID might be reported rather than looking up the argu-

ments and executable name from the process table. Many of these transformations

require one or more filesystem accesses that could impose significant delays. If the

information is not required then there must be consideration of the delay introduced

by collecting and including that information.

Many existing audit systems operate in a manner that makes them compatible

for NRT usage. One common design is an audit source that generates data that is

written out to a file descriptor. Often, this is a file on disk, but through the use of

named pipes or /proc/fd files, it is possible to have the data be sent directly to a

CSM consumer or network transmitter.

Usually, audit data is generated as events occur and then fed into the audit output

stream without any consideration of the state of the data consumer. The underlying

assumption of the audit system is that the data stream is constantly being consumed,

and the detection system assumes that it is able to process the data as fast as it

becomes available. Often, there is little or no effort made to synchronize the behavior

of these two components. This leads to NRT audit and monitoring systems operating

in a stream-like manner – they rely on the blocking and buffering features of modern

I/O systems to handle many of the issues in their communication.

Another issue that needs to be considered during the design of a NRT audit source

is how to handle issues of concurrency. For instance, a system might have multiple

CPUs, each of which might be generating audit records. There are a number of

possible solutions to handling these issues including mutex locks, multiple streams,

and CPU binding.

The first technique is to employ some sort of mutex lock on the audit system

output to prevent more than one process from trying to access it at the same time.

The standard issues of deadlock prevention or detection apply. Consideration must
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be made in terms of the commingled audit streams that are generated. It is possible

that the information about a child will appear before the record of the parent forking

a child has been entered or similar problems. It is possible that the other CPUs might

block while waiting for the mutex lock to become available, reducing the performance

of the overall system to that of a uni-processor machine or worse.

The second technique is to avoid the issue of locking by simply having each

CPU generate its own audit trail. This avoids the potential issue of performance

degradation as a consequence of blocking on a mutex lock. However, this solution

introduces the additional problem of trying to determine how to merge the various

audit trails. This may require the CSM to become more complex as it will be

consuming multiple audit streams, or for the introduction of a log merging function

in either the operating system or the audit system.

The final technique is to bind the audit record generation to a single processor.

This serves both as a mutex type lock (it can only generate one record at a time) and

to merge multiple auditable events that may take place on other processors. This

solution pushes the responsibility for handling the concurrency issues onto the audit

source and away from the need to be handled by CSM themselves.

4.2.3 Periodic Audit Systems

Audit systems that operate in a periodic mode supply data such that it can be

processed within an interval of the data being delivered from the audit system.

tD(b) ≤ tb + 2 ∗ p

Recall that the upper limit for NRT systems is tb + δ. Generally, p is larger than δ

(p > δ), if not substantially larger (p >> δ). This leads to a much greater interval

between transmissions of audit data. Also, the audit data builds up for an interval of

size p before being transmitted leading to “bursty” delivery of audit data. Contrasted

against the stream-like behavior of NRT systems, periodic audit systems operate in
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a block-oriented mode; relatively large amounts of data are sent after a significant

time interval. This leads to a number of design considerations.

The block data transmission requires that the audit system transmit complete

audit records. (Streaming systems might have incomplete records, but it should be

handled by the buffering mechanisms in the I/O functions.) This requires that the

audit system be concerned with buffer sizes to determine if a record will completely

fit inside an output buffer and locking audit files or buffers so that incomplete records

are not transmitted.

As audit records are being sent as part of a larger data block, the impact of trans-

mission latency is lessened and therefore increasing the amount of data transmitted

will have a smaller impact. This means that additional contextual information can

be included along with the audit records. Not only can such information be included

with little additional cost, it should be included because the cost of requesting ad-

ditional information is much higher in periodic systems. A request for additional

information can usually be serviced within three intervals of data transmission (the

initial send, the transmission of the query, and the reply), which in periodic systems

can be quite substantial. Because the interval might be on the order of hours or

days, the possibility of the information having changed is significant.

A possible audit system can be designed to take advantage of the delay between

generation and transmission of audit data to incorporate additional information into

the audit record. An audit record could be generated containing space for additional

information. A second process could be performing the various lookups and fill in as

many of the blanks as possible before the next transmission cycle. In this manner,

the audit system can both supply information in a timely manner as well as include

as much context as possible without introducing delays.
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4.2.4 Archival Audit Data Generation

Audit systems that are designed to supply information for use in retrospective

or archival mods of operation need to generate records with the understanding that

the system on which the information was collected might no longer be available for

analysis. The audit trail should be as self-contained as possible and be able to be

used by CSM systems without them needing to make additional queries from the

audit source. This has a different nuance from the above instances of attempting to

make audit records self-contained. The importance of such in this case is not for an

efficiency reason, rather, the concern is that the information will not be available.

One technique that can be used to incorporate more of the system state into the

audit trail is journaling. In a journaling-type audit trail, the initial system state can

be recorded during initialization and as changes occur, they are included in the audit

trail. It is the initial state-dump that most strikingly distinguishes an archival audit

trail from the others. Table 4.7 offers an idea of what events might be recorded

as part of the initial system state dump as well as the subsequent events. The

information collected in the initial dump as well as the subsequent events recorded

need to be tailored to reflect the various goals of detection that this audit source is

going to support.

In other timeliness modes, the amount of information is lessened because of the

need to consider response time as well as the ability to make queries. However,

archival systems can make no such assumptions. The data that is part of the audit

trail may be the only record of the events that took place on the system. Conse-

quently, audit systems that are being designed to operate with retrospective systems

need to take such concerns into consideration.

4.3 Goals of Detection

Historically, there has been a marked division between the specification, design,

and implementation of audit data sources and the specification, design, and imple-
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Table 4.7
Information that might be collected as part of the state-dump that
could be incorporated into an archival audit trail for a Unix system.
[FV99,Dit01]

Initial dump: • dmesg output (current hardware configuration)

• /etc/rc scripts being used (boot-time system configuration)

• current process table

• dump of /etc/passwd (current users and UID mappings)

• kernel configuration files and state

• /etc/fstab (mounted filesystems)

Later events: • process executions (dump argv and environ)

• mounting and unmounting of filesystems

• filesystem changes (mv, symlink, link, etc.)

mentation of Computer Security Monitoring systems. Frequently, the audit sources

present in an operating system are based upon a set of standards intended to allow

the system to pass some sort of security evaluation (e.g., TCSEC [US 85] or Com-

mon Criteria [Com]). The designers of CSM systems identify what information is

available on the target system and then decide how they can use that information

and what additional data collection the CSM needs to perform on its own.

As the audit systems are usually designed and built before the various CSM

systems, it is reasonable to assume that they were designed to be general in nature

and not tailored towards any particular type of security monitoring other than that

which is inherent in the requirements met as part of the security evaluation. This

has led to some CSM systems being designed based on the information available,

rather than the more logical design of having the audit data produced based on the

data needs of the consumers. Additionally, the general nature of the audit data

implies that the audit source is providing information that is able to be used by

multiple systems. The side effect of trying to support multiple detection goals is
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that you supply information that is unneeded by some monitoring applications as

well as (possibly) not providing all of the information that would be useful within a

specific area.

This section discusses how an audit system might be designed to supply informa-

tion based on the goal of detection that a CSM system could be performing. This

can help in the design and construction of tailored audit sources that can either be

separate structures or possibly a single system that can be configured to support the

multiple goals of data consumers.

4.3.1 Detection of Attacks

Based on the definition presented in Section 3.2.1, an attack can either be de-

scribed by a set of actions or by a particular sequence of data, such as payload, pro-

gram, malicious data file, etc. Therefore, the detection of attacks can be performed

by looking at either the actions or the objects on the system, or both. Where the

information should be collected from depends on the type of attacks that are being

looked for and the level of abstraction being used.

On a computer, user actions are best examined at either the kernel or applica-

tion level. Many existing audit systems collect information about user actions on

the kernel level. Information from the application level is often limited to the infor-

mation that specific programs generate. Sometimes that has information about user

behavior, but usually it is reporting about its own actions.

One of the most straightforward attack detection techniques involves the collec-

tion and comparison of all data (or at least a subset of a particular type of data)

against a set of signature patterns. For instance, some virus detection tools moni-

tor email traffic looking for a predefined set of strings that are indicative of email

viruses. This can be expanded to more descriptive instances (e.g., sequence of NOP

codes followed by machine instructions), but they necessarily need to be carefully

described and finitely bounded or they risk being non-computable.
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The type of data to be collected for attack detection will depend upon the type

of attacks and nature of the detection being performed. However, we can suggest

general categories of data corresponding to existing classes of attacks.

Systems that are looking at network based attacks need to have access to the

packet header information and/or payload contents. Systems that are looking for

known instances of malware (worms, viruses, etc.) will need access to the content of

executable files either on disk or when they are loaded to be executed. Systems that

are looking for buffer overflow attacks can either find instances of attack tools in a

manner similar to malware or it can be looking for instances of attack by monitoring

application level data copying functions. To address one type of race conditions,

the audit source needs to include information on file accesses both by symbolic and

resolved names.

4.3.2 Detection of Intrusions

The detection of intrusions takes place by identifying users with permission to

access a computer system accessing things that they are not allowed to, or someone

accessing a system without authorization. To perform either of these functions, the

audit system needs to be supplying information about the user that is performing

the actions. Modern operating systems perform user authentication and use access

control lists as techniques to prevent such intrusions from occurring.

There are two types of detection that can be performed as part of the detection

of intrusions. The first is to identify when the user authentication system has failed

in some way. The second is to identify when there is a failure of the access control

system.

When the authentication system fails, that means that someone is using an ac-

count that does not belong to him. For a CSM to detect this, it has to have sufficient

information to decide if the user performing actions is the one who should be using

this account. There have been a number of techniques proposed for authenticating a
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user including the following: biometrics such as fingerprints, retinal images, or hand

shapes; behavior such as typing patterns or mouse movements; and shared secrets

such as simple passwords, image based passwords, or cryptographic keys. Other

types of user behavior can be used for a profile-based system. This behavior can be

collected at any level of abstraction, but to be useful, a user needs to have somewhat

consistent behavior.

In the second instance (that of detecting someone with authorization to use the

machine, but not having authorization to access the programs or files), a CSM needs

to either determine that someone is using an account other than his own or that the

access control mechanism either failed or was not properly specified. The first case

is usually detected in the same manner as detecting authentication failures. The

information that would be useful for determining ACL failures would involve the

access policy which usually cannot be supplied by the audit system and the list of

user attempts to access objects – both success and failure.

4.3.3 Detection of Misuse

The detection of misuse involves determining when a user is abusing his autho-

rization. To that end the audit system needs to relay audit records about what

information users are accessing. The level of information that should be reported

depends upon the level at which the policy is written. In the case of system operators

abusing authority, there might be sufficient information supplied at the kernel level

reporting of file accesses. For “regular” users of the system, the information needed

will depend upon the level at which the policy is written and how the information

is stored.

If the information is divided into separate files for each record, then informa-

tion collected at the kernel level regarding file accesses might be sufficient. If the

information is commingled within a single file, then kernel level information may be

insufficient. It might be possible to use kernel level information regarding file read
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and write to determine what information has been accessed, but it generally would

be better to collect audit information at the application level. If the access control

policy operates based on procedure oriented access control, or if the mechanism for

accessing information is standardized (e.g., a DBMS), then collecting information

based on these procedures and methods would be recommended. However, with-

out a standardized method for accessing the data, it would be difficult to generate

appropriate information at the application level.

If detection of misuse is to take place in the retrospective time frame, it is im-

portant that the information regarding the computer system’s policy is stored along

with the rest of the audit records. Without the policy, it may not be possible to

perform the detection of misuse because without knowing what is considered ac-

ceptable use, it is impossible to determine misuse. Consider an audit trail that is

based on recording the queries of a health care database. Certain actions might have

been acceptable at the time, but a change in policy (e.g., HIPAA implementation)

might make those same actions misuse. If the policy is stable and long lasting, then

it might be possible to reconstruct it based on the current policy. If the policy is

dynamic, then periodic based systems would need to have copies of the policy, or

at least information included in the audit trail indicating when a change in policy

occurred.

4.3.4 Computer Forensics

Describing the audit information that should be collected to support computer

forensics is difficult because almost any piece of information might be useful as part

of forensic analysis. As the goal of computer forensics is to reconstruct the state of

the system as well as events on the system, then any piece of information might be

useful to that end.

In general criminology, forensics is a scientific process. There are generally ac-

cepted practices and procedures that are used as part of evidence collection as well
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as describing what evidence should be collected. Computer forensics currently lacks

much of this rigor as it is operating on transient electronic media being controlled

by multiple types of operating systems, and this creates systems that are subject to

multiple sets of “laws” or operating rules.

Dissimilarly, physical forensics only has one set of physical laws that are in play.

Even radical location changes such as being on another planet will only affect some

of the parameters of the system, not the basic model. However, for something like

a removable flash drive, then the exact changes that take place to it will depend

upon what operating system is affecting such changes, and possibly what version or

patches have been applied to that specific machine. This lack of a common frame of

reference suggests that much information about the environment in which the audit

information is being generated should be included in the audit record, especially if

this is to be used with an archival system.

The type of information that is collected to be used for computer forensics needs

to include not only what the users are doing, but it must also include information

as to what the computer system is doing on its own. This can include generating

records about the physical hardware state (register values, memory contents, and

machine instructions), the state and operation of physical devices (printers, network

cards, etc.), storage media, operating system state (kernel configuration and state

variables), process tables, daemons, and user actions. Table 4.8 gives an idea of both

the scope and types of information that are available. The data should be collected

in a manner consistent with its volatility.

If the forensic information is intended to be used in court, then there are addi-

tional concerns about the method used to collect information and a need to record

the chain of custody for the evidence itself. There are publications describing how

practices in physical evidence collection can be applied to digital evidence collec-

tion [CS03,CS04].
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Table 4.8
A partial list of the types of information that can be collected as part
of an audit trail designed to support computer forensics.

Registers Stack contents

Data Buffers Network Traffic

Size State of network

Content Addresses (IP, MAC, etc.)

Location Interface type

UID to name mappings Running network services

Password fields (home directory, shell,

UID, GID, etc.)

Open and TIME WAIT network ports

Instructions (based on granularity) Pathname resolutions

System calls symlinks

Library calls disk and inode mappings

Machine instructions

Processes Filesystem state

signal handlers Mounted filesystems

Parent PID Mount points

Children Exported filesystems

Exit status Filesystem types

Resources used (self and children,

both current and total)

CWD, PWD, controlling terminal

Other running processes Executable code (binary)

Process transitions (fork and exec) Users currently logged in

Interrupt occurrences (mouse, key-

board, etc.)

Network events
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5 AUDIT SOURCE

This chapter describes the implementation of a new audit source designed to provide

data based on the type of detection the end user will be applying.

It is our hypothesis that our categorization of CSM systems will allow us to

improve upon the design of audit systems. The idea is that by using the goal of

detection as part of the design criteria, we can build audit systems that are providing

more relevant information than an audit system that is designed to supply only

general purpose data. To test this, we designed and constructed a set of audit

sources. We elected to use Unix for our proof of concept platform because of our

experience with the operating system and the availability of several machines for

development and testing.

5.1 Audit System Design

Our design goals included building a set of audit sources that were:

• Standalone: Each audit source (attack, intrusion, misuse) must be able to

operate independently of the other modes of operation.

• Composable: The audit sources should be such that we could use one or

more of them simultaneously, preferably without requiring any major changes

in architecture.

• Not require recompilation: While it is possible to build audit sources into

an operating system at many different levels, many of those additions would

require having access to the source code and recompiling it. While this is

possible, a simpler solution would be one that did not require this step.
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• Portable: Ideally, these audit sources would be able to be used on various

Unix-like operating systems without needing substantial modifications other

than a possible recompilation.

Based on past experience [KS98,KS99b], we knew that it was possible to attain

these goals through the the use of a technique known as library interposition. In-

terposition is the “process of placing a new or different library function between the

application and its reference to a library function” [Cur94]. This technique allows

a programmer to intercept function calls to code located in shared libraries by di-

recting the dynamic linker to first attempt to reference a function definition in a

specified set of libraries before consulting the normal library search path.

In many operating systems, most applications make use of a standard set of

routines and functions that are provided on the system and stored in libraries. This

code is used by many applications and most systems use a technique known as linking

to allow each program to utilize function within the library without requiring the code

for the function to be duplicated in every copy of the source code. Additionally, a

technique known as dynamic linking/loading is used to eliminate the need for these

library functions to be copied into every compiled application and provide a way

for libraries to be changed or updated without requiring the recompilation of all

programs making use of the library.

What happens is that at compile time, a program that is dynamically linked

contains its own functions but only references to shared library functions are stored

within the program. The compiler will check along a library search path for libraries

that contain references to unresolved symbols. If all functions are resolved, the

compiled program is created (as an executable) with a list of what libraries are

needed to execute the program with all external references.

At execution time, the dynamic loader copies the executable into memory and

locates and maps all library dependencies. Many times, these libraries are already

in memory, and instead of loading another copy of them, the programs can share

a copy thus saving both space on disk for stored programs but also memory space
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Program

Call foo()

Library

Function foo()

Figure 5.1. The normal way in which a dynamic library makes a library call

for executing programs. During the execution of the program if a reference to a

library function is encountered then the linker traverses the shared library search

path until it encounters a library that contains the function (loading it into memory

if necessary). Figure 5.1 shows how this affects program flow.

Because the code is not stored in the executable program itself (and loaded

dynamically at runtime), an administrator can upgrade/update/install new versions

by replacing the existing libraries with another that has the same name and function

entry points.

Library interposition is a technique that takes advantage of dynamic linking by

causing a specially constructed dynamic library to be accessed instead of the standard

library. An interposed library can be used to change the behavior of an application,

collect additional information, modify arguments, or any other programmable task.

Many times, the library is designed in such a way that the interposing function will

call the actual library function in a manner that allows the program to behave as it

would otherwise. Additionally, libraries that posses this sort of behavior are able to

be composed in a manner such that more than one library call is interposing on the

same function (see Figure 5.1).
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Function foo()

Call foo()

Interposable Library

Function foo()

Call foo()

Library

Function foo()

Program

Call foo()

Interposable Library

Function foo()

Call foo()

Interposable Library

Figure 5.2. The way in which a program’s library call can be resolved
through a composition of interposable libraries.

Using interposition, we can collect information both before and after the next

layer of library reference. Additionally, the values can be modified if desired (either

the arguments or the return values) as part of the interposing code. More information

about library interposition and the construction of interposable libraries can be found

in [Nak01,Jon93,Sun96,Sun94].

5.1.1 Timeliness

This system only supports near real-time detection as anything that would sup-

port real-time detection would need to have collaboration with the data consumer

as well as the data source. Additionally, any locking mechanism for the audit source

would potentially interfere with performance benchmarks.

As this system is designed to support near real-time detection, the output mech-

anism will simply write the output to a file stream. By default, output will be sent

to stderr, which usually is an unbuffered output stream. However, by setting an

environment variable, the output of the library can be sent to a specified file for

storage.
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5.2 Implementation

The next sections describe the design of each of the audit systems created. The

audit libraries were written in a deliberately naive manner. Specifically, there is no

filtering that is applied to the event selection or audit record generation. If the design

of the library is such that a particular event is to be recorded, then all instances of

that event are recorded, even those that are unlikely to be of use within the particular

scope of detection. This will cause the results generated to reflect the upper bound

in terms of amount of data generated and overhead.

The key thing we wish to prove via our implementation is that more narrowly

focused audit sources are capable of generating better audit data and a reduced sized

audit trail. Detractors might criticize our implementation as being too expensive in

terms of overhead. We acknowledge that performance improvements can be made by

using more optimized, kernel-based methods of logging and data generation. These

techniques are lacking in portability, but could potentially be added in at a later

time. However, our implementation should adequately demonstrate our primary

goals.

5.3 Attack Detection

There are a number of data items that are of concern to various attack detection

CSM systems. For our prototype, we focused on building a library that was capable

of supplying information that would be useful for the detection of buffer overflow

attacks, format string attacks, and race conditions.

5.3.1 Buffer Overflows

Buffer overflow attacks are usually the undesirable side-effects of unbounded

string copy functions. The most common examples from the C programming lan-

guage are strcpy() and gets(), which copy each character from a source buffer to
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a destination buffer until a null or newline character is reached, respectively. The

vulnerability arises because neither checks whether the destination buffer is large

enough to hold the source buffer’s contents, nor can they take a parameter specify-

ing the buffer size. In C programs, there is no bounds checking and what happens

is that data is written into memory starting with the base address of the destina-

tion buffer and continuing sequentially until there is no more data to be copied. If

more data is copied than space was allocated, adjacent memory locations will have

been overwritten. If the buffer was a local variable (and therefore allocated on the

program stack) then an overflowing buffer could overwrite other variables as well as

stored frame pointers and return addresses.

Typically an attacker exploits this software fault in the following manner. A local

buffer is filled in excess of its bounds to directly overwrite a return address on the

stack. The data used to overwrite the saved return address is selected to redirect

execution to code of the attackers choice (often contained within the same overflowed

buffer and copied along with the rest of the data). Whenever program execution of

the function responsible for the frame containing the modified return completes, the

modified value will be loaded into the instruction pointer register, thereby directing

execution to the malicious code.

If a CSM system is designed to detect buffer overflow attacks, then it is concerned

with the following information on string copying functions:

• How long is the data to be copied?

• Where does the data come from?

• Where is the data going? (e.g., stack, heap, global storage)

• What is the length of the initial string? The final string?

• What is the content of the data string?

The following library functions were interposed for data collection:

• strcpy(), strcat()



101

• gets()

• scanf(), vscanf(), fscanf(), vfscanf(), sscanf(), vsscanf()

• sprintf(), vsprintf()

• realpath(), getwd()

The interposing audit library generates records for each consisting of

• record size

• function name

• source information (length, Global/Heap/Stack information, and value)

• destination information (length, Global/Heap/Stack information, and value)

• format string (for printf and scanf-like functions)

5.3.2 Format String Attacks

Format string attacks are a type of attack first recorded in the middle of 2000

[Scu01, Arc00, Bou00, New00]. These are similar to buffer overflow attacks in that

data from the user of a program is incompletely mediated and that malicious input

can be used to modify the program stack to cause the execution of an attacker’s

code.

Certain C library functions use format strings that allow a programmer to for-

mat data input and output using a predetermined set of conversion specifications. (A

commonly encountered example is the printf() function.) When a function using

these format specifications is invoked, a stack frame is created and the specification

arguments are pushed onto the stack along with a pointer to the format string. When

the function executes, the conversion specifiers will be replaced by the arguments

on the stack. The vulnerability arises because programmers write statements such
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as printf(string) instead of the proper form: printf("%s",string). The state-

ments operate identically unless string contains conversion specifiers. In this case,

for each conversion specifier, printf() will pop an argument from the stack. There

is no programmatic way to determine the number of parameters passed to printf()

other than guessing based on the number of conversion specifications included in the

format string.

If a user can specify the format string to be used, then an attacker can input

an argument string using the conversions specifiers. Consider this short C program

with a vulnerable sprintf() function.

#include <stdio.h>

int main(int argc, char *argv[]) {

char buf[100];

sprintf(buf,argv[1]);

printf("-> %s <-\n",buf);

return 0;

}

The first argument passed on the command line is being copied into the character

array buf. If a user passes in the string “fluffy bunnies” then the output will be the

following:

% ./a.out "fluffy bunnies"

-> fluffy bunnies <-

%

However, if a user includes any of the formatting specifiers, then sprintf() will

interpret them. Because only two arguments are passed to the call to sprintf(), the

values used by the specifiers will come from data already on the stack. An attacker
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might decide to examine the values on the stack using the %x format specifier to

print the value in hex.

% ./a.out "%x %x %x %x %x %x"

-> ffbee714 300 2234c ff29bc20 0 66666265 <-

%

Each time a %x is encountered, a word is popped from the stack and displayed in

hex format. In this case, the value of the next six words on the stack are printed.

Using this technique, the attacker can dump the contents of the entire stack.

The key to using this attack to modify stored data is the "%n" conversion specifier,

which pops four bytes off the stack and writes the number of characters in the format

string before "%n" to the address pointed to by the popped four bytes. Basically,

if we move up the stack popping values using "%08x", and then when we reach

a known address value we insert a "%n" in the format string, we would write the

number of characters we had in the format string so far onto the return address on the

stack. Note that length specifiers allow the creation of arbitrarily long format string

“lengths” without needing the string itself to be an equal length. For example,

the string "%.500x" is only six characters long, but would result in five hundred

characters being printed.

One of the arguments that is passed to sprintf() is the format string itself. An

attacker can use this to select an arbitrary address and store it in a known location

on the stack as the following example shows.

% ./a.out "AAAA %x %x %x %x %x %x"

-> AAAA ffbee714 300 2234c ff29bc20 0 41414141 <-

%

The value of the character A is 41, so the sixth %x is displaying the first 4 characters

of the format string, AAAA. If that %x were changed to a %n then the program would

try to write the value 35 to memory address 0x41414141. By changing the first four
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bytes and adding length specifiers, an attacker can write almost any value to almost

any location in memory.

Ideally, the audit data necessary to detect these functions would be the format

string and the number of arguments passed to that function. As previously men-

tioned, we cannot determine how many arguments were passed to that function, so

instead we simply report the name of the function and the format string.

The following functions are interposed in this manner as part of the attack audit

data generation library: printf, fprintf, sprintf, snprintf, vprintf, vfprintf,

vsprintf, and vsnprintf.

5.3.3 Race Condition Attacks

Race condition attacks are more formally known as TOCTTOU attacks.

TOCTTOU is an abbreviation for Time Of Check To Time Of Use and are for-

mally defined in [BD96]. This class of attacks is possible because most operating

systems have a weak binding between file names and actual files. This type of attack

can take place during sequences of file access based on the name of a file rather than

a file descriptor. In part, vulnerabilities of this type exist because the POSIX stan-

dard does not include some of the system calls that would be necessary to eliminate

them. However, in many cases these faults are introduced by programmers in an

non-deliberate manner.

Specifically, what happens is that a program accesses a file based on its pathname

(either relative or absolute) and later attempts to access the same file via the same

pathname expecting both references to resolve to the same file on disk. However,

it is possible for a user to modify the file system in such a manner that the second

request resolves to a different entity than the first request. To generate data that can

be used to detect such a situation, the audit library collects information from the

library functions that reference files by name rather than through a file descriptor.

Those functions include the following:
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• access • acl • chmod

• chown, lchown • creat • execv, execve, execvp

• link, symlink • mknod • open

• rename • stat, statvfs, lstat • utime, utimes

5.4 Intrusion Detection

For the detection of intrusions, we utilized the model proposed by Lane and

Brodley [LB97, LB99], which uses command sequences to determine whenever an

imposter is accessing someone else’s account. This is based on generating a user pro-

file of normal behavior that can then be used to detect anomalous changes through a

computation of sequence similarity. The command sequence information is recorded

by the library, but it has been augmented to include additional information about

the program that is being executed and the state of the system at the time of that

execution.

Additionally, process accounting information is also logged such that basic anomaly

detection as proposed by Denning [Den87] can be performed.

Information recorded includes the following:

• The initial real, effective, and saved user identification values

• The final real, effective, and saved user identification values

• The initial real, effective, and saved group identification values

• The final real, effective, and saved group identification values

• The program name (as invoked by the user)

• The arguments from the command line

• The stat() information of the binary itself (to prevent user command aliasing

problems)
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• The amount of user CPU time spent executing

• The amount of system CPU time spent executing

• The total user CPU time used by all children

• The total system CPU time used by all children

5.5 Misuse Detection

The types of misuse we are looking for include file accesses such that a CSM

system similar to Janus [GWTB96] can detect policy violations, the reading or ac-

cessing of another user’s files, and information on read or write attempts on the

same. Consequently, file accesses including accesses that are based on file handles

are interposed to generate audit information including the following:

• access • acl, facl

• open, fopen • close, fclose

• creat, mknod • chmod, fchmod

• chown, lchown, fchown • execv, execve, execvp

• stat, lstat, fstat, statvfs • unlink

• truncate, ftruncate • symlink, link

• rename • tmpfile, mktemp, mkstemp

• dup2, dup • write, pwrite

• read, pread • utime, utimes

A CSM system that is to use this information would also need to have a policy

file that describes what are the acceptable file access policies. Because policies differ

between organizations, the audit source cannot supply policy information on its own.

Because we have not filtered out any of these events, the information from this audit

source should be able to be used with any specified policy.
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5.5.1 Audit Data Reporting

Audit information is reported by the interposing library via labeled variable size

audit records with the following format:

TYPE : FNAME : PID SIZE PAYLOAD

where TYPE is a one character marker indicating which audit library generated

the record (’A’ for attack, ’I’ for intrusion, and ’M’ for misuse). FNAME is the name

of the function or type of record represented by ASCII characters surrounded with

delimiting ’:’ characters (there are no spaces between any of the fields in the actual

audit record). The PID is the process number at the time when the program is

initially invoked. The SIZE field is of type size t and contains the length of the entire

audit record in characters including the previously described header information.

PAYLOAD contains the rest of the audit record in a variable format depending on the

value of FNAME. For a full description of all audit records see CERIAS TR 2004-

25 [Kup04].

Each library uses an environment variable to indicate where the audit records

should be written. Those variables are AUDLIB ATTACK, AUDLIB INTRUSION, and

AUDLIB MISUSE for the respective library. If these variables are not set, output

defaults to stderr.

5.6 Benchmark Testing

Testing was performed on a Sun Microsystems SunFire v100 with 256MB of

memory. Comparisons were made against the Solaris BSM (Basic Security Module)

audit system that is an integral part of Solaris. Information about the BSM module

can be found in chapters 20–23 of [Sun03]. Two testing methodologies were applied.

The first set of tests were done with a system benchmark and they are described

in this section. The second set of tests were done using the performance of an
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application and are described in Section 5.7. System benchmarks can magnify smaller

effects caused through implementation choices.

Benchmarking was performed by using the BYTE Unix benchmark [SY91]. The

documentation describes it as follows: “The BYTE UNIX benchmarks consist of

eight groups of programs: arithmetic, system calls, memory operations1, disk oper-

ations, Dhrystone, database operations2, system loading, and miscellaneous. These

can be roughly divided into the low-level tests (arithmetic, system calls, memory,

disk, and Dhrystone) and high-level tests (database operations, system loading, and

the C-compiler test that is part of the miscellaneous set).” The benchmark is de-

signed to execute a particular task as many times as possible within a set time

interval. It then repeats the test a number of times and averages the results to de-

termine the value for a particular test. A run of the benchmark including all program

groups takes approximately one hour.

5.6.1 Experimental Setup

The three interposable audit libraries were compiled on the target machine and

installed into the system library directory (/usr/lib). To support both 32- and

64-bit applications, a 64-bit compilation was made and stored in /usr/lib/64. The

system dynamic loader configuration was updated to include both of these directories

in the system search path.

To measure the performance impact of the audit libraries, the benchmark was

run as a normal user with no other operations taking place on the computer during

the course of the execution. The benchmark was run once to establish a baseline,

then run with each of the audit libraries in turn, and finally the baseline was run

again making a total of 6 runs.3 To enable BSM, the system needed to be rebooted.

1Memory access tests were deleted from the benchmark in January 1990.
2Database operation tests were removed from the distribution of the BYTEBench Benchmark in
May 1991.
33 different library instantiations were tested yielding a set of 6 baseline runs. All of these were
used to generate the average benchmark value.
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At this point, BSM auditing was enabled for the user running the benchmark and a

run with BSM auditing was performed. Then, auditing was configured to record no

events and disabled, at which point in time another baseline run of the benchmark

was made.

The general design for each of these benchmark sections is that a particular task

is run in a loop for a fixed period of time, with the measurement being made of the

number of loops that are successfully performed within that interval. This allows

for a fixed runtime (approximately one hour for all tests to complete) as well as

producing results in which larger values indicate “better” performance.

The tables in Section 5.6.2 to 5.6.8 use the following labeling conventions. The

column labeled Baseline Avg. reports the mean value of the baseline runs. The

column labels A-Lib, I-Lib, M-Lib refer to the values based on the run of the

BYTEBench benchmark while using the audit source designed to generate data

for the detection of attacks, intrusions, and misuse, respectively. The label AIM

refers to the values based on the run of the benchmark with all three audit libraries

generating data simultaneously. The column marked BSM has values from the run

of the benchmark with BSM auditing enabled.

5.6.2 Results – Arithmetic Functions

The arithmetic tests are based on a source program that performs assignment,

addition, subtraction, multiplication, and division with each test simply changing

the data type that is being used in the performance of this task. These tests are

all CPU intensive and the auditing systems probably only affected the performance

during process initialization and conclusion so we expected minor effects, if any at

all. The results of these tests are shown in Table 5.1 and the percentage difference

from the average between the baseline runs is shown in Table 5.2.

As expected, all runs are close to the average baseline with a number of them

actually performing better than the baseline. The largest variation is a decrease
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Table 5.1
The results of the arithmetic tests of the BYTEBench 3.1 Benchmark. The results are expressed in terms of
loops-per-second, and a higher value is considered to be better.

Data type Baseline Avg. Attack Intrusion Misuse AIM BSM BSM/disabled

Overhead 4354281.9 4357155.7 4356670.4 4354866.8 4353858.4 4353987.0 4352582.5

Register 64684.0 64751.0 64701.6 64653.6 64814.5 64682.8 64619.1

Short 61500.2 61513.3 61509.1 61534.2 61565.8 61535.3 61481.9

Integer 64674.5 64733.1 64698.1 64653.4 64650.5 64603.9 64573.8

Long 64664.5 64702.5 64737.4 64638.6 64714.9 64725.4 64654.9

Float 168701.4 168804.4 168770.4 168718.3 168728.2 168699.2 168727.3

Double 131897.4 131950.0 131911.1 131869.4 131910.4 131876.0 131912.7



111

Table 5.2
The percentage difference from the average of the baseline runs of
the arithmetic tests of the BYTEBench 3.1 Benchmark. A smaller
value is considered better, with negative values indicating a faster
runtime than the baseline average.

Type A-Lib I-Lib M-Lib AIM BSM

Overhead -0.05% -0.04% 0.00% 0.02% 0.02%

Register -0.12% -0.04% 0.03% -0.22% -0.01%

Short -0.02% -0.01% -0.06% -0.11% -0.06%

Integer -0.06% -0.00% 0.07% 0.07% 0.14%

Long -0.06% -0.12% 0.04% -0.08% -0.10%

Float -0.06% -0.04% -0.01% -0.02% -0.00%

Double -0.04% -0.01% 0.02% -0.01% 0.01%

of 0.22%, which occurs when computing with register variables and all three audit

libraries enabled. The largest overhead is 0.14%, which occurs when BSM is being

used with integer variables. The lack of significant change is notable because this

test is CPU-bound and variations would have indicated that the audit libraries were

interfering in an unexpected manner.

5.6.3 Results – Dhrystone

The Dhrystone benchmark was developed originally in 1984 [Wei84] and revised

in 1988 [Wei88] by Dr. Reinhold P. Weicker while he was a part of Siemens AG.

This benchmark is designed to model the mix of mathematical and other operations

present in the typical programs of that era. This includes integer mathematics, no

floating point calculations, array manipulation, character strings, indirect addressing,

conditional operators, and program flow control operations.

The results of this benchmark are shown in Table 5.3 and the percentage change

is shown in Table 5.4.
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Table 5.3
The results of the Dhrystone 2 benchmark tests of the BYTEBench 3.1 Benchmark. The results are expressed
in terms of loops-per-second, and a higher value is considered to be better.

Data type Baseline Avg. Attack Intrusion Misuse AIM BSM

Without register variables 1050044.8 1050594.3 1050162.6 1050011.0 1049827.0 1050292.4

Using register variables 1049918.0 1050414.0 1049701.3 1050150.6 1050347.5 1049637.5
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Table 5.4
The percentage difference from the average of the baseline runs of
the Dhrystone 2 tests of the BYTEBench 3.1 Benchmark. A smaller
value is considered better, with negative values indicating a faster
runtime than the baseline average.

Type A-Lib I-Lib M-Lib AIM BSM

w/o Reg. Vars. -0.05% -0.01% 0.00% 0.02% -0.02%

Reg. Vars. -0.05% 0.02% -0.02% -0.04% 0.03%

In this case, we again see that the various audit systems have a negligible impact

on performance, and in many cases increasing it slightly above average. The largest

variation took place during the times when the library designed to generate data

related to attacks were occurring. In both cases, the benchmark was 0.05% faster. It

is possible that this performance improvement was caused by the library’s technique

of caching the function pointer to the interposed function. (A similar improvement

was noticed in [KS99b].) The only library calls are malloc, strcpy, strcmp, and

printf of which only strcpy and printf are interposed, and only in the Attack

library.

A 2001 white paper [Wei02] by EEMBC (the Embedded Microprocessor Bench-

mark Consortium), it is pointed out that the Dhrystone benchmark can spend be-

tween 10% and 20% of its time in the strcpy and strcmp functions, so it was

expected that the overhead of the interposing library would be noticeable, and only

affecting the Attack library (the others do not collect information on these functions).

Although noticeable, the performance difference is likely not significant.

5.6.4 Results – System Calls

The next set of tests are designed to measure the overhead of making system

calls. The System Call Overhead Test performs a tight loop of the following calls:
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close(dup(0));

getpid();

getuid();

umask(022);

of which close() and dup() are interposed by the misuse library. The Pipe Through-

put Test creates a pipe and then reads and writes from it. Again, only the misuse

library interposes on the read() and write() calls. The Pipe-based Context Switch-

ing Test behaves similarly; it uses two pipes and a set of processes to do the reading

and writing. The Process Creation Test has the parent process fork() and then

wait() for the child to exit(). The Execl Throughput Test recursively invokes

itself via the execl() system call, keeping track of the number of iterations by

modifying the command line arguments.

The results of these tests are shown in Table 5.5 and the percentage difference

from the average baseline is shown in 5.6.

For the system call overhead test, the results for our audit libraries are as ex-

pected. Both the attack and intrusion libraries perform slightly better than the

average baseline, however the misuse library incurred a substantial cost of approx-

imately 40%. Surprisingly, this is only half of the overhead of using Solaris BSM

(80%).

For the two pipe-based tests, the attack and intrusion libraries have limited im-

pact (though the intrusion library manages to improve performance 7%) while the

misuse library incurs significant cost. In this case, it is nearly 90%, probably because

pipe-based communication takes place entirely in memory, but the audit library is

making several I/O requests for logging purposes. The BSM audit system only

has a 19% overhead, probably because the logging is taking place within the kernel

avoiding the need for additional context switches when writing data to disk.

In the process creation test, the three audit libraries all had similar, substantial

overhead costs (on the order of 40%–50%) which was worse than the 9% overhead

that BSM had. The construction of this test is a tight loop of a forking parent
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Table 5.5
The results of the system call benchmark tests of the BYTEBench 3.1 Benchmark. The results are expressed
in terms of loops-per-second, and a higher value is considered to be better.

Test Baseline Avg. Attack Intrusion Misuse AIM BSM

System Call Overhead 118385.1 119435.1 119621.0 72885.8 69151.5 22899.3

Pipe Throughput 74890.4 76344.9 80304.4 8232.3 8229.0 60324.2

Pipe-based Context Switching 33062.7 32336.8 32106.6 3951.0 3946.2 26697.5

Process Creation 661.9 404.9 352.0 346.6 265.0 604.0

Execl Throughput 274.6 160.3 161.6 157.9 111.9 218.2
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Table 5.6
The percentage difference from the average of the baseline runs of
the system call benchmark tests of the BYTEBench 3.1 Baseline. A
smaller value is considered better, with negative values indicating a
faster runtime than the baseline average.

Type Avg A-Lib I-Lib M-Lib AIM BSM

Sys. Call Overhead 118385.1 0% -1% 38% 42% 81%

Pipe Throughput 74890.4 -2% -7% 89% 89% 19%

Pipe-based Ctx. Sw. 33062.7 2% 3% 88% 88% 19%

Process Creation 661.9 39% 47% 48% 60% 9%

Execl Throughput 274.6 42% 41% 42% 60% 21%

process that then waits for the child to exit. The audit libraries are designed to

record information on process start and termination involving a number of file open()

requests that are probably dominating the overhead increase.

The execl() throughput test is interesting in that the program continuously

executes itself, but passes information on the number of iterations by changing the

command line arguments for each invocation. Again, we see that the audit libraries

have over 40% overhead, which is double what is incurred by the BSM audit system

(21%). It seems likely that the start-up routines for the audit libraries are responsible

for this overhead.

5.6.5 Results – Filesystem

The next set of benchmark tests are designed to measure the capabilities of the

filesystem. They consist of reading, writing, or copying a file for an interval of time.

The resulting scores are based on data transfer rates (KBps) instead of the number of

loops-per-second which the other tests use. The misuse audit library is watching for

all file accesses (including reads and writes) and so will probably have a noticeable

performance impact. Of the other two libraries, the only interposition will be from
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the attack library tracking the open() and fprintf() requests, both of which only

occur during the setup of the test.

The scores from these tests can be seen in Table 5.7 and the percentage of over-

head incurred is in Table 5.8.

The file read and copy tests behaved as we expected with respect to the attack and

intrusion audit libraries in that they had no performance overhead (rather, it seems

they have improve performance). The misuse library did incur some performance

cost, but it is much higher than anticipated. It is only performing a tenth of the

throughput in the file read tests and one quarter of the throughput in the other two.

In contrast, the BSM audit system has approximately 22% overhead for file read,

15% overhead on file write, and 8% overhead on file copy. The misuse library has a

similar high/medium/low performance, but with differing ratios.

The misuse library is reporting every file read() request including information

on where the buffer is located. In our experimental setup, there was only one disk

meaning that the audit log is being written to the same filesystem that is used for

the throughput tests. Every benchmark read() is going to cause a number of audit

system write() requests. To test to see if this was possibly responsible, another run

of the benchmark was performed using a set of audit libraries where the routine that

was to write the log information to disk simply returned success without making the

actual write() call. Table 5.9 shows the performance overhead of this configuration.

It is important to note the behavior of the BSM audit system when it is enabled,

but no records are selected for logging, is not known. Our audit system is still

generating the audit records, it simply does not write them to disk. The BSM

system might not be generating any audit records in this situation. However, we are

including this information for completeness.

The performance overhead for the misuse library during the file read test dropped

from being over 90% to about 19%. The file write also decreased substantially from

75% to 26%. Surprisingly, the file copy test dropped even further, which is interesting

considering that it is composed of multiple read and write requests. The attack and
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Table 5.7
The results of the filesystem benchmark tests of the BYTEBench 3.1 Benchmark. The results are expressed
in terms of kilobytes-per-second, and a higher value is considered to be better.

Test Baseline Avg. Attack Intrusion Misuse AIM BSM

File Read (10 seconds) 201680.8 211138.0 213264.0 16973.0 17097.0 158800.0

File Write (10 seconds) 60910.8 49732.0 49300.0 12566.0 12566.0 51899.0

File Copy (10 seconds) 24130.2 24882.0 24489.0 6377.0 6353.0 21932.0

File Read (30 seconds) 202560.0 212605.0 213758.0 17077.0 17142.0 155930.0

File Write (30 seconds) 60603.2 49110.0 49244.0 12455.0 12322.0 51310.0

File Copy (30 seconds) 23715.7 24147.0 24065.0 6377.0 6364.0 21901.0
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Table 5.8
The percentage difference from the average of the baseline runs of
the filesystem tests of the BYTEBench 3.1 Benchmark. A smaller
value is considered better, with negative values indicating a faster
runtime than the baseline average.

Type Avg A-Lib I-Lib M-Lib AIM BSM

File Read (10s) 201680.8 -5% -6% 92% 92% 21%

File Write (10s) 60910.8 18% 19% 79% 79% 15%

File Copy (10s) 24130.2 -3% -2% 74% 74% 9%

File Read (30s) 202560.0 -5% -6% 92% 92% 23%

File Write (30s) 60603.2 19% 19% 79% 80% 15%

File Copy (30s) 23715.7 -2% -2% 73% 73% 8%

Table 5.9
The percentage difference from the average of the baseline runs of
the filesystem tests of the BYTEBench 3.1 Benchmark. A smaller
value is considered better, with negative values indicating a faster
runtime than the baseline average. These tests were run using audit
systems that were not actually writing the data out to disk.

Type Avg A-Lib I-Lib M-Lib AIM BSM

File Read (10 seconds) 201680.8 -5% -5% 19% 19% -5%

File Write (10 seconds) 60910.8 20% 20% 27% 26% -2%

File Copy (10 seconds) 24130.2 -1% -2% 7% 8% -3%

File Read (30 seconds) 202560.0 -5% -6% 19% 19% -5%

File Write (30 seconds) 60603.2 19% 19% 26% 26% -3%

File Copy (30 seconds) 23715.7 -1% -2% 7% 8% -2%
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intrusion libraries did not experience a decline in overhead during the file write test.

This would seem to indicate that the overhead in these systems during this test is

not being caused by the logging mechanism.

5.6.6 Results – System Loading

The next set of benchmark tests are based on seeing how the system behaves

under variations in system load with a different number of concurrent processes. The

system executes a number of shell scripts simultaneously and record the number of

loops of the scripts that are able to be performed. The script that is executed sorts a

short file, searches through that, and counts the results. The results of this portion

of the benchmark can be seen in Table 5.10 and the performance overhead for each

of the audit systems can be found in Table 5.11.

One of the most notable characteristics is that the performance overhead is con-

sistent without regard to the number of concurrent processes. The attack and misuse

audit libraries are over 29% overhead. The intrusion library has approximately 25%

overhead. All three of these are larger than the overhead of 17% caused by the BSM

system.

5.6.7 Results – Miscellaneous

The last few portions of the benchmark are based on miscellaneous tests. The

first is a C Compiler test that performs iterations of the compilation of a sample

program. The second is the calculation of the square root of 2 to 99 decimal places

using the Unix dc (desk calculator) utility. The third test is based on solving the

Tower of Hanoi puzzle repeatedly. The raw scores for these tests can be seen in

Table 5.12. The compiler and square root values are expressed in terms of loops-

per-minute while the value for the Tower of Hanoi test is in loops-per-second. The

percentage of overhead for each of the audit systems are shown in Table 5.13.
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Table 5.10
The results of the system loading benchmark tests of the BYTEBench 3.1 Benchmark. The results are
expressed in terms of loops-per-minute, and a higher value is considered to be better.

Test Baseline Avg. Attack Intrusion Misuse AIM BSM

Shell scripts (1 concurrent) 534.7 379.0 401.0 377.0 297.7 448.7

Shell scripts (2 concurrent) 276.8 196.0 208.0 195.0 154.0 229.0

Shell scripts (4 concurrent) 140.8 99.0 106.0 99.0 78.0 116.0

Shell scripts (8 concurrent) 70.7 50.0 53.0 50.0 39.0 58.0



122

Table 5.11
The percentage difference from the average of the baseline runs of the
system loading tests of the BYTEBench 3.1 Benchmark. The number
in parenthesis indicates the number of concurrent shell scripts being
executed. A smaller value is considered better, with negative values
indicating a faster runtime than the baseline average.

Type Avg A-Lib I-Lib M-Lib AIM BSM

Shell scripts (1) 534.7 29% 25% 30% 44% 16%

Shell scripts (2) 276.8 29% 25% 30% 44% 17%

Shell scripts (4) 140.8 30% 25% 30% 45% 18%

Shell scripts (8) 70.7 29% 25% 29% 45% 18%

For the C compiler test, the attack library had an 8% overhead, which was better

than the 10% overhead incurred by the BSM system. The misuse audit system had

slightly under 14% overhead. Surprisingly, the attack library had significantly higher

overhead – 66% – which is the only time that the attack library had significantly

worse performance than the others. This is probably because compilation involves

many string operations that are only interposed in the the attack library.

For the calculation of the square root of two, all three of our libraries performed

similarly. The overhead was similar to that of process execution. This is probably

because the calculation involved is able to be performed quickly on current hardware,

causing this portion of the benchmark to be reduced to that of process execution.

However, the calculation does take long enough to reduce the impact that the library

initialization and finalization routines have on system performance.

5.6.8 Results – Benchmark

The BYTEBench benchmark calculates an index value based on the scores of

six of the individual benchmarks. They were selected in such a manner to span

the various categories. The values are normalized against the performance of a Sun
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Table 5.12
The results of the miscellaneous benchmark tests of the BYTEBench 3.1 Benchmark. The results are
expressed in terms of loops-per-minute for the first two and loops-per-second for the third. A higher value
is considered to be better.

Test Baseline Avg. Attack Intrusion Misuse AIM BSM

C Compiler 319.0 108.3 293.2 275.3 103.3 287.2

Dc: sqrt(2) to 99 decimal places 10072.3 6341.7 6565.7 6220.0 4629.7 7977.6

Recursion – Tower of Hanoi 20336.9 20323.5 20329.1 20322.0 20337.5 20339.3
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Table 5.13
The percentage difference from the average of the baseline runs of the
miscellaneous tests of the BYTEBench 3.1 Benchmark. A smaller
value is considered better, with negative values indicating a faster
runtime than the baseline average.

Type Avg A-Lib I-Lib M-Lib AIM BSM

C Compiler 319.0 66% 8% 14% 68% 10%

Sqrt(2) to 99 digits 10072.3 37% 35% 38% 54% 21%

Tower of Hanoi 20336.9 0% 0% 0% 0% 0%

294.15

Baseline

280.53

Attack

280.69

Intrusion

159.52

Misuse

153.91

AIM

269.17

BSM

Figure 5.3. The Index values for the BYTEBench 3.1 benchmark.

Microsystems Sparc computer system (circa 1990) such that a computer performing

identically will have an index of six (one point per test), twice as many operations

would yield a twelve, and so forth. Table 5.14 shows the normalized scores for the

various tests with Figure 5.3 representing the index values graphically. Table 5.15

shows the percentage difference from the average baseline score.

One of the interesting things to note is that the index value is dominated by the

file system test. Unfortunately, this is a test on which the misuse library has a high

amount of overhead cost, resulting in an overall index score that is 45.77% less than

the average baseline index. The other two audit libraries only were slightly under

5%, which was better than the 8.49% overhead incurred by the BSM audit system.
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Table 5.14
The index scores and normalized results that are used to calculate them for the BYTEBench 3.1 benchmark.

Test Baseline Avg. Attack Intrusion Misuse AIM BSM

Arithmetic – double 51.89 51.91 51.90 51.88 51.90 51.88

Dhrystone (w/o register vars) 46.94 46.97 46.95 46.95 46.94 46.96

Execl Throughput 16.82 9.72 9.79 9.57 6.78 13.22

File Copy (30 seconds) 134.72 134.90 134.44 35.63 35.55 122.35

Pipe Throughput 26.03 24.53 24.35 3.00 2.99 20.25

Shell scripts (8 concurrent) 17.75 12.50 13.25 12.50 9.75 14.50

Total 294.15 280.53 280.69 159.52 153.91 269.17
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Table 5.15
The percentage overhead incurred by each auditing system as
compared to the average index score of the baseline runs of the
BYTEBench 3.1 system benchmark.

Type Avg A-Lib I-Lib M-Lib AIM BSM

Index 294.15 5% 5% 46% 48% 9%

Table 5.16
The percentage of overhead that the various logging mechanisms
generated on the BYTEBench 3.1 benchmark when auditing was
enabled, but logging itself was not taking place.

Type Avg A-Lib I-Lib M-Lib AIM BSM

Index 294.15 4% 4% 10% 12% 7%

Utilizing the data collected from the run of the various audit libraries without

actually writing data to disk, we can attempt to eliminate the issue caused by the

misuse library writing to disk whenever a read operation is taking place. Table 5.16

shows the overhead that takes place from the audit library without it actually writing

data to disk.

The performance of the attack and intrusion libraries improved, but by less than

1%. However, the overhead of the misuse library improved by 36% to 10%. While

this is a substantial improvement, it is still worse than the performance of BSM both

with and without logging. Figure 5.4 shows the index values graphically.

5.6.9 Results – Log Sizes

One of the other goals of the specialized audit systems was to produce less audit

data than a general purpose audit system. Table 5.17 and Figure 5.5 present the var-

ious log sizes created by the various audit systems during the run of the BYTEBench

3.1 benchmark.
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272.77
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Figure 5.4. The Index values for the BYTEBench 3.1 benchmark
with logging disabled.

Table 5.17
The file sizes of the various log files generated reported in terms of
the number of bytes stored on disk.

Audit sources used Size of log file

Detection of Attack 67785671

Detection of Intrusion 33653421

Detection of Misuse 554961827

Detection of AIM (Total) 624372632

(Attack: 61176998)

(Intrusion: 26304418)

(Misuse: 536891216)

Solaris BSM 961045085
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Log Size (in megabytes)

Figure 5.5. The file sizes of the log files generated by each of the audit
sources during a run of the complete BYTEBench 3.1 benchmark.

The attack library generated 64.64MB of data, the intrusion library generated

32.09MB of data, and the misuse library generated 529.25MB of audit data. Whether

taken singly, or all together, the amount of data generated is less than the 916.52MB

produced by the BSM audit record. In all cases the audit log is still in its non-

printable binary state.

5.6.10 Results – Number of Records

Another advantage of specialized audit systems is that they potentially generate

fewer audit records that need to be handled by a CSM. Figure 5.6 presents the

number of audit records generated during the run of the BYTEBench 3.1 benchmark.

5.6.11 Audit Log Content

Another one of the stated goals for improving audit systems was the inclusion of

more useful information in the audit log to allow for security monitoring systems to
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Figure 5.6. The number of audit records generated.
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improve their accuracy and detection abilities. Although the audit trails generated

by the three prototype libraries are much smaller than the BSM audit trail, there is

information in each that is able to be used for the various goals of detection that is

not present in the BSM audit trail.

Most of the data generated by the attack audit library is information that is not

present within the BSM audit trail. Most of the records are based on information

collected at the application level while BSM only has information collected by the

kernel. Application level information is essential for the detection of a number of

attacks, and the information regarding buffer size, content, and location is not avail-

able at the kernel level. The information regarding the symbolic names used in file

accesses is included in our library, but is not present in the BSM record. Finally,

there is no information in BSM regarding the format strings used during input or

output routines. Almost all of the information in the attack library audit trail is not

present in the BSM audit trail.

The data collected by the intrusion library has some overlap with the information

contained in the BSM audit log, but much of it is novel. Information not present

in the BSM audit trail includes the saved user identification values, information

on the resources consumed by this process and its children, and some of the stat

information regarding the executable.

The misuse library was looking at file accesses, all of which are mediated by

the kernel and therefore should be present within the BSM audit trail. However,

BSM does not record when a file is actually being read from or written to. This

information is unique to our misuse library, and makes up approximately 56% of the

total number of audit records generated.

5.7 Application Testing

The goal of these audit sources are that they will generate fewer records, con-

sume less disk space, and provide new data not currently available for each of the
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goals of detection. To test this, experimentation was performed with the Apache

webserver and accompanying benchmarking tool ab. Version 1.3.27 of the webserver

was downloaded from http://www.sunfreeware.com/ and installed on the test ma-

chine. Two iterations were run, the first was to only have auditing enabled for the

webserver. The second involved auditing the benchmark tool.

5.7.1 Apache Webserver

The Apache webserver package was installed and left in the default configuration.

In this state, a default webpage is displayed when a web client connects to port 8080

on the server. The server pre-forks 8 children to handle incoming web requests and

logs all URL requests in an application log file. The benchmarking tools were run

without auditing and set to fetch the homepage 1000 times and present averaged

results.

In terms of the number of records generated, we were interested in seeing that

the server is generating more information regarding the internal operations so that

detection of attacks can be performed. It is less likely that it will be generating

information that is related to the detection of either intrusions or misuse. Table 5.18

shows the number of records generated, and Table 5.19 shows the size of the various

audit logs.

The attack library generated significantly more audit records than the other

libraries. These were almost all (97.4%) for the strcpy() library call. As this audit

library records the contents of the data buffers, the size of the audit file is dependent

on each instance of the call. However, it does generate an audit log that is ten times

the size of the one generated by BSM, but it does so while generating thirty-two

times more records. The intrusion library generates only eight records taking only

2KB of space. The misuse library generates approximately 70000 records, of which

90% are stat() calls.
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Table 5.18
The number of audit records generated by the Apache webserver.

Audit sources used Records generated

Detection of Attack 2483709

Detection of Intrusion 8

Detection of Misuse 69348

Detection of AIM (Total) 2553752

(Attack: 2484219)

(Intrusion: 32)

(Misuse: 69501)

Solaris BSM 77413

Table 5.19
The file sizes of the audit logs generated in terms of the number of
bytes stored on disk generated by running the Apache webserver.

Audit sources used Size of log file

Detection of Attack 128314520

Detection of Intrusion 2496

Detection of Misuse 4062970

Detection of AIM (Total) 132381118

(Attack: 128314548)

(Intrusion: 2720)

(Misuse: 4063850)

Solaris BSM 12973075
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In terms of performance, the baseline setup is able to serve pages at a rate of 90.5

pages per second. With the attack library enabled, the server had a rate of 3.6 pages

per second, with the intrusion library the server had a rate of 90.8 pages per second,

with the misuse library the server handled 62.3 pages per second, and with BSM

enabled the server throughput was 66.5 pages per second. A second iteration was

performed using our non-logging audit sources and the performance was substantially

better. In this instance when the attack library was enabled, the server had a rate

of 67.6 pages per second, using the misuse library yielded 90.2 pages per second,

and with the misuse library it served 86.9 pages per second. Again, much of the

performance degradation appears to be coming from the recording of audit records,

not the collection and generation of the information.

5.7.2 Apache Benchmark Application

The Apache webserver package includes a tool named ab which will rapidly re-

quest a given URL from a server. This tool was used to generate the traffic to the test

webserver. For this set of tests, audit records were generated based on the operation

of the ab tool. Table 5.20 shows the number of records generated, and Table 5.21

shows the size of the logfiles generated.

For these tests the attack and intrusion libraries generated few audit records,

which were collectively under 5KB total size. The misuse library generated approx-

imately 30000 records and took up 664KB. While the BSM audit library generated

40000 audit records (one third again what our libraries generated), they were sub-

stantially larger taking 5MB of disk space.

In terms of performance, the baseline was able to service 108.9 pages per second.

Our attack library resulted in a rate of 108.6 pages per second, with our intrusion

library the rate was 108.5 pages per second, and with our misuse library it served

94.9 pages per second. In contrast, with BSM enabled the benchmark requested

only 77.3 pages per second. A second run with our non-logging libraries yielded a
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Table 5.20
The number of audit records generated by the Apache webserver
benchmarking tool ab.

Audit sources used Records generated

Detection of Attack 112

Detection of Intrusion 3

Detection of Misuse 30007

Detection of AIM (Total) 30125

(Attack: 112)

(Intrusion: 4)

(Misuse: 30009)

Solaris BSM 40211

Table 5.21
The file sizes of the various log files generated reported in terms of
the number of bytes stored on disk generated by running the Apache
benchmark tool.

Audit sources used Size of log file

Detection of Attack 4763

Detection of Intrusion 336

Detection of Misuse 680447

Detection of AIM (Total) 685684

(Attack: 4763)

(Intrusion: 364)

(Misuse: 680557)

Solaris BSM 5385900
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baseline of 92 pages per second, and rates of 92.1, 92.1, and 92.3 pages per second

for the attack, intrusion, and misuse libraries, respectively.

5.7.3 Apache Tests Summary

In the Apache tests, other than the attack library used on the webserver, our

libraries generated fewer audit records, smaller audit logs, and had comparable or

better performance. In the one instance where more audit records were generated,

this was desirable because the audit records generated gave information that would

be able to be used to detect attacks that were previously not able to be detected.
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6 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

In this chapter we will review the conclusions reached and summarize the contri-

butions that have been made by this dissertation. It then discusses directions for

future research on this subject.

6.1 Conclusions

Historically, computer security monitoring (CSM) systems have been classified

based on their structural characteristics. One category used is the type of analysis

being performed to make a decision whether to generate an alert or not. Techniques

used include the detection of statistical anomalies; rule based detection through the

encoding of an expert’s decision making process, a set of signatures, or electronic

representation of policy; and binary triggers. Additional categorizations are made

based on where data is gathered and where it is processed. While useful in describ-

ing how the systems are constructed, these categorizations fail to classify systems

such that they could be reasonably compared in terms of detection coverage and

performance.

The sources of audit information in current operating systems were designed

to meet TCSEC requirements put forth by the US Department of Defense. The

TCSEC requirements were designed to support multi-level, secure computing with a

particular worry about classified information being leaked to uncleared individuals.

While leakage of information is still a concern, there are other threats that also need

to be addressed.

The authors of CSM systems are building systems that perform a variety of

types of detection based on these modern concerns. However, the audit information

that modern systems make available was designed to supply information based on
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the older concerns of TCSEC and designers of modern systems have been forced to

make do with what is available. It is time for the information needs of the detection

systems to decide what information should be in an audit trail instead of the current

practice of deciding what can be detected based on the audit information supplied.

We have observed an increase in the amount of information despite seeing a

reduction in the size of audit records. Improved quality of information is vital to

assist in the reduction of false alarms in CSM systems. This improvement works

towards correcting the problems expressed by “Garbage-In, Garbage-Out” – CSM

systems can only be as accurate as the information with which they are provided.

6.2 Summary

In this dissertation we have demonstrated that it is possible to categorize com-

puter security monitoring systems based on the goal of detection. We identified four

categories: detection of attacks, detection of intrusions, detection of misuse, and

computer forensics. The categorization is reasonable because there are instances of

CSM systems that exemplify each goal, and there are identified differences between

the categories. However, these categories are useful and complementary in terms

of detection coverage (e.g., selecting a set of CSM systems such that you have one

of each category) and layering (e.g., selecting more than one CSM system within

the same category). Categorizing systems based on the goals of detection makes for

more useful comparisons because items within the same group should be looking for

similar activities.

We also demonstrated that it is possible to more rigorously define the timeliness

of detection instead of using the current online/offline categories. We identified four

modes of operation: real-time, near real-time, periodic, and archival. We formally

defined the timeliness bounds for each category and described the differences that

exist between each.
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The utility of this categorization was further demonstrated by examining how

audit sources can be designed to support both the goals of detection and timeliness

of operation. We described what information each would need and discussed several

of the architectural considerations that need to be made to support the various

timeliness modes.

To verify that a special-purpose audit system was an improvement over exist-

ing general-purpose, TCSEC inspired audit systems, a set of three prototype audit

sources were created – one each supplying audit information useful for the detection

of attacks, intrusions, and misuse. These were then compared against Sun Microsys-

tems’ BSM audit system while running a system benchmark. All three audit systems

generated less data, but with content that is not present in BSM. Additionally, in

most cases the new audit libraries had less performance overhead on the operation

of the computer system.

Another set of tests were performed using the Apache webserver and accompa-

nying benchmark tool. When generating audit data during the operation of the

webserver, the attack library generated substantially more data than the BSM audit

system, but the intrusion and misuse libraries generated less in terms of number

of records and log size. However, the information that was generated was related

to the internal behavior the the webserver, and is useful for the detection of buffer

overflow attacks. When generating audit information for the benchmarking tool, all

three of our prototype libraries generated fewer records, smaller log files, and better

performance than BSM.

6.3 Summary of Major Contributions

There were several specific contributions made by this dissertation including the

following:

• Goals of detection: The various goals of CSM detection were described in

detail with examples of each identified and described.
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• Timeliness of classification: Formal bounds for the various modes of oper-

ation for CSM systems were identified and described.

• Categorization of CSM systems: The two above descriptions were used to

classify CSM systems. This classification augments the existing classifications

by grouping systems based on their behaviors instead of the current practice

of classifying based on structure. This leads to a more specific language for

describing a CSM system.

While a CSM system might have behaviors that fit into multiple compartments

(i.e., multiple goals of detection, multiple modes of operation), this categoriza-

tion allows similar items to be grouped together. This can be used to establish

better metrics by which to measure them by as their purpose and operation is

more clearly articulated.

This classification also allows an organization to select CSM systems such that

they have appropriate coverage and layering in terms of types of detection to

be performed. If an organization is unsure of their needs, then the classification

can offer them a template from which to select systems.

Requirements for security are often “non-functional,” but the timeliness aspects

allows for a more functional specifications.

• Design of audit sources: The effects of the above categorization on the

design of audit sources was examined. Differences in the type of information

and audit source behavior were described.

• Requirements for real-time detection: The behaviors necessary for real-

time audit sources and CSM interaction are described.

• Prototype audit sources: A set of three prototype audit sources were con-

structed to demonstrate the validity of this approach and utility of the catego-

rization. These were shown to impose less overhead (in general), to generate
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significantly smaller amounts of audit data, and generate audit information

that is more useful for the stated goal of detection.

While there are other contributions contained within the dissertation, these are

the most salient points.

6.4 Future Work

There are number of directions in which this work can be expanded. While we

have classified a number of existing CSM systems, there are certainly many more

that can be classified using our categorization. One difficulty that is likely to arise

is that many of these CSM systems have a closed or proprietary design, making it

difficult to accurately ascertain goals of detection and timeliness modes of operation.

However, a large scale application of this categorization might result in a useful tool

for organizations to help them select appropriate CSM systems for their desired

coverage.

The existing audit system prototype can be improved in a number of ways. First,

each audit source can be expanded to included more events. For instance, the attack

library currently supports three families of attacks, but this can be expanded to in-

clude more. Second, the audit libraries can be made to be configurable and support

the enabling and disabling of specific audit events. At present there is no filtering

capabilities; however, adding such should continue to improve the performance of

the system and reduce the amount of information that is being generated. Third,

the logging mechanism can be improved to reduce the amount of overhead incurred,

especially during filesystem intensive tasks. This might involve using non-portable

operating system routines. Finally, the audit generation capabilities can be incorpo-

rated into the standard set of libraries. This will allow information to be generated

for all applications without the use of interposition, and can lead to having audit

data generation capabilities being incorporated into statically linked binaries as well.
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As mentioned earlier, audit information can be used for more than computer se-

curity monitoring. Additional research needs to be performed to examine if similarly

focused special-purpose audit sources can support goals such as process accounting,

health and performance monitoring, and system recovery.

Finally, prototypes based on some of the proposed architectures for audit systems

can be constructed and examined. Among the possible designs are the following: a

real-time audit system that supports the suspension of processes until being signaled;

an audit source designed to operate with periodic CSM systems that utilizes a

second process to fill in optional information while waiting for the audit data to

be transmitted; and an audit system designed to supply information for use in an

archival computer forensics based system.



LIST OF REFERENCES



143

LIST OF REFERENCES

[ACD+01] D. Alessandri, C. Cachin, M. Dacier, O. Deak, K. Julisch, B. Ran-
dell, J. Riordan, A. Tscharner, A. Wespi, and C. Wüest. Malicious- and
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[DDW99] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a Taxonomy of
Intrusion-Detection Systems. Computer Networks, 31(8):805–822, 1999.
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