
Database Support for
Audit Trails &

Intrusion Detection
M.J. Atallah and S. Prabhakar

Students
Saurabh Sandhir
Maximillian Karpiak
Salvador Mandujano

 Why use DB support ?

 Flexibility and extensibility
 Efficiency
 Scalability
 Maintainability
 Ease of use and convenience

Attack and Audit Log Files

Action 1

Action1:user:date:time:IP address:attributes
Action2:user:date:time:IP address:attributes
Action3:user:date:time:IP address:attributes
. . .

Action 2
Action 3

Action 3

Audit Log File

Multiple users

Audit Log Files

User A

User B

User C

Attack!

Audit log file

header

BSM audit format

subject path

Audit record

ID length event time:date

attribute

Field

Token

field

 BSM
 parser

Audit log files

Decomposing audit
records into fields

field

field

field field

field

field

Database Schema #1:
table per event Database Schema 2:

table per token

Database Schema 3:
hybrid approach

fieldfield field

field field

DB

Database tables containing
audit data

SQL detection queries

Query for
Attack #3Query for

Attack #1
Query for
Attack #1

Detection report :

Pattern of Attack #1 detected: User C, Date, Time
Pattern of Attack #2 detected: User C, Date, Time

Database Schema 1. Table per event

• Natural implementation from the BSM format

Event tables

Database Schema 2. Table per token

• Ease to include new events

Main table
Token-field

tables

Database Schema 3. Hybrid approach

• Remove redundancy and improve efficiency

Token-field tables

Event table

Status
• 3 alternative schemas developed
• Scanning, parsing, uploading and detection
integrated in one program
• Writing more elaborate SQL queries

Points to address
• More extensive scalability testing
• More complex attack patterns

Tools used

1. Oracle 8. Relational Database Management System

2. BSM. Basic Security Module, Sun Microsystems

3. ANTLR 2.0.7. Language generator

 - BSM grammar (Chapman Flack, CERIAS)

4. Java 1.2.2

5. SunOS 5.6. UNIX scripting (csh)

DB

 BSM
 scanner

Performance graphs

0

2

4

6

8

1 0

1 2

1 4

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0

0

5 0

1 0 0

1 5 0

2 0 0

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0

0

2000

4000

6000

8000

1 0000

0 50000 100000 1 50000 200000 250000

Generation time

Detection time

Sequential upload

Batch upload !

