

Space-Time Optical Systems for Encryption of Ultrafast Optical Data

J.-H. Chung Z. Zheng D. E. Leaird Prof. A. M. Weiner

Ultrafast Optics and Optical Fiber Communications Laboratory

Electrical and Computer Engineering & Center for Education and Research in Information Assurance and Security

Ultrahigh-Speed Optical Communications

- **CAPACITY** increased at over 4 dB per year.
 - Experiments with 1 Tb/s and higher.
 - Commercial systems with 400-Gb/s.
- ELECTRONIC ENCRYPTION has difficulties above ~ 10Gbit/s.
- Our research aims at **OPTICAL ENCRYPTION BOXES AT PHYSICAL LAYER** for such high speeds.

Progress in Speed

Transmission capacity (though SMF) versus year

[A. R. Chraplyvy; Bell Labs Technical Journal, Vol. 4, No. 1, 1999]

- WDM and OTDM
- ★ WDM and polarization mux

ETDM – Electronic time-division multiplexing Mux – Multiplexed OTDM – Optical time-division multiplexing WDM – Wavelength-division multiplexing

Ultrafast Optics and Optical Fiber Communications Laboratory

Commercial

Single channel (ETDM)

A Multi-channel (WDM)

Optical Time-Division-Multiplexed (TDM) Transmission

Short

- Resembles conventional
 electronic networks.
- Focus on packet processing including
 HEADER RECOGNITION and ENCRYPTION of TDM OPTICAL DATA at 100 Gb/s and beyond.

Modified from [S Kawanishi, NTT; IEEE Journal of Quantum Electronics, Vol. 34, No. 11, Nov. 1998]

Signal

Optical

Mod

~20Gb/s

Opt

Mux

Ultrafast Optics and Optical Fiber Communications Laboratory

4/20/00

100 Gb/s

 $\sim 1 \text{Tb/s}$

Optical Encryption at Physical Layer

Modified from [D. Salameh et al.; Bell Labs Technical Journal, Vol. 3, No. 1, 1998]

Ultrafast Optics and Optical Fiber Communications Laboratory

High-Speed Optical Encryption Box

Subsystems for Ultrahigh-Speed Optical Encryption

- Serial-to-parallel converter to allow header recognition and packet processing at rates compatible with electronics
- Key generator array
- Ultrahigh-speed **optical XOR gate** or array of high-speed **optoelectronic XOR gates** for stream cipher (for example)
- **Parallel-to-serial converter** to reform the ultrahigh-speed TDM data stream

We are working on novel parallel optical/optoelectronic subsystems to implement the serial-to-parallel conversion, parallel XOR gating, and parallel-to-serial conversion subsystems.

Approach of Space-Time Processing

- •Manipulates optical data in parallel to keep up with high speed stream.
- Pulse shaper: generate ultrafast test waveforms
- •Time-to-space converter: Serial stream => Parallel data input
- •Smart Pixel optoelectronic array: Digital logic operations like header recognition
- •Space-to-time converter: Parallel data output => Serial stream

Ultrafast Optics and Optical Fiber Communications Laboratory

Direct Space-To-Time Pulse Shaper (Space-To-Time Converter)

Ultrafast Optics and Optical Fiber Communications Laboratory

Direct Space-To-Time Pulse Shaper Apparatus

Ultrafast Optics and Optical Fiber Communications Laboratory

Femtosecond Data Packets

Ultrafast Optics and Optical Fiber Communications Laboratory

Time-to-Space Converter

• Using a reference pulse, make Spatial replica of input Signal pulses. Mar/Apr. 1998]]

•We have demonstrated 500 times sensitivity improvement, which is key for operation at realistic power budgets in high-speed systems. Modified form [P.C.Sun, Y.T. Mazurenko and Y. Fainman; Journal of the Optical Society of America A, Vol. 14, P. 1159, 1997]

Optoelectric-VLSI Smart Pixel Array

- Hybrid CMOS/GaAs from Lucent foundry
- 200 Optical I/O's
- High-speed modulator array functionality for ultrafast optical packet generation
- AND gate array functionality for experiments on ultrafast optical header recognition
- XOR gate array functionality for experiments on ultrafast optical stream cipher

Digital Logic Operation of Smart Pixel Array

- Processes the spatially-converted data in parallel, using an array of detectors
- The data would be XORed electronically with a stored key, to implement a stream cipher.
- The processed data then drives an optoelectronic modulator array inserted in a suitable space-to-time converter to get back to a serial ultrafast optical signal.
- Works out to frame rates of a few Gb/s to be able to achieve overall data rates exceeding 100 Gb/s.

Other Approach to Encryption: Optical CDMA

- Encoding/decoding of ultrafast waveforms at the bit level
- Provide security at the physical layer
 - Keep unauthorized users without key from getting access to the bitway.
- Can circumvent electronics bottlenecks and potentially implement directly in the optical domain certain network operations, such as addressing and security, which traditionally have been performed electronically

Schematic of Ultrashort Pulse Optical CDMA

Decoding a Pulse

We have demonstrated coding, transmission, decoding, and optical correlation of femtosecond pulses over multi-kilometer fiber spans.

Modified from [Z. Zheng, S. Shen, H. Sardesai, C.-C. Chang, J.H. Marsh, M.M. Karhkhanehchi, and A.M. Weiner, Optics Communications Vol. 167, P. 225, Aug. 1999]

Ultrafast Optics and Optical Fiber Communications Laboratory

Conclusion

- Using space-time processing technique, we can perform encryption operation on optical data at the physical layer, especially in the high-speed optical TDM transmission.
- Optical CDMA scheme can also encode and decode optical data at the physical layer for the purposes of addressing and security.

