
Temporal Sequence Learning and Data Reduction for Anomaly Detection

Terran Lane Carla E. Brodley

School of Electrical and Computer Engineering and

the COAST Laboratory

Purdue University, West Lafayette, IN 47907-1287

email: fterran,brodleyg@ecn.purdue.edu

Abstract

The anomaly detection problem can be formulated as one
of learning to characterize the behaviors of an individual,
system, or network in terms of temporal sequences of dis-
crete data. We present an approach to this problem based
on instance based learning (IBL) techniques. To cast the
anomaly detection task in an IBL framework, we employ an
approach that transforms temporal sequences of discrete,
unordered observations into a metric space via a similarity
measure that encodes intra-attribute dependencies. Classi-
�cation boundaries are selected from an a posteriori charac-
terization of the valid user's behaviors, coupled with a do-
main heuristic. An empirical evaluation of the approach on
user command data demonstrates that we can accurately
di�erentiate the pro�led user from alternative users when
the available features encode su�cient information. Fur-
thermore, we demonstrate that the system detects anoma-
lous conditions quickly | an important quality for reducing
potential damage by a malicious user. We present several
techniques for reducing the data storage requirements of the
user pro�le, including instance selection methods and clus-
tering. An empirical evaluation shows that a new greedy
clustering algorithm reduces the size of the user model by
70% with only a small loss in accuracy. A comparison of
the greedy clustering technique to clustering with K-centers
shows that greedy clustering is preferable in terms of accu-
racy and computation time for this domain.

1 Introduction

In this paper, we examine the problem of anomaly detection
as one of learning to characterize the behaviors of an indi-
vidual, system, or network in terms of temporal sequences
of discrete data. Although we focus here on user oriented
anomaly detection at the level of shell command input, the
methods we present are generalizable to learning on arbi-
trary streams of discrete events such as GUI events, network
packet tra�c, or system call traces.

The anomaly detection problem is a di�cult one, espe-
Copyright c 1998 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advan-
tage and that copies bear this notice and the full citation on the �rst
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior speci�c permission and/or a fee. Request permis-
sions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

cially at the level of user command traces. It encompasses a
broad spectrum of possibilities, from a trusted system user
turning from legitimate usage to abuse of system resources,
to system penetration by sophisticated and careful hostile
outsiders, to one-time use by a co-worker `borrowing' a work-
station, to automated penetrations launched by a relatively
naive attacker via a scripted attack sequence. Time spans
of interest vary from a few seconds to months. Patterns
may appear only in data gathered from a number of dif-
ferent hosts and networks, possibly spread over thousands
of miles geographically. The amount of available data to
sift through can be truly staggering, as security o�cers may
be responsible for overviewing thousands of hosts, each of
which can generate megabytes of audit data per hour. Se-
lection of the data sources of interest can also be di�cult.
Do the patterns of interest evidence themselves most clearly
in command data, system call traces, network activity logs,
CPU load averages, disk access patterns, or any of the hun-
dreds of other possible sources? The patterns of interest
may be corrupted by noise or interspersed with examples
of normal system usage. Indeed, normal usage may vary
greatly as the user changes tasks or software and learns new
behaviors and command actions. Di�erentiating innocuous
anomalies from those associated with actual abuse, misuse,
or intrusion is a further di�culty. On top of all of these
di�culties, a practical security system must be accurate;
false alarms will reduce user con�dence in the system while
falsely accepting anomalous or hostile activities will render
the system useless.

Subsets of the general problem have been addressed by
specialized techniques. Short term (`hit and run') attacks
and attacks launched by automated scripts can often be
detected by pattern matching to databases of known at-
tack patterns (for example, [Kum95, SCCC+96]). Similarly,
there are numerous free and commercial programs for de-
tecting the presence of known vulnerabilities and viruses by
signatures, [FV95, Gor96].

We are interested in the subset of anomaly detection ori-
ented to longer term patterns, in which known misuse sig-
natures are insu�cient to distinguish the space of possible
anomalies. This subset covers not only intrusions but also
hostile activities by a trusted user and even relatively `in-
nocuous' policy violations such as inappropriate use of sys-
tem resources by an authorized user. We take a machine
learning viewpoint of this problem, in which the task is to
train a classi�er with known `normal' data to distinguish
normal behaviors from anomalous. The �eld of machine
learning (and arti�cial intelligence, in general) is strongly
motivated by pattern detection and analysis problems and

150



possesses many techniques for di�erent pattern recognition
problems.

To approach anomaly detection as a machine learning
task, we must de�ne both the learning model and repre-
sentational format for the input data. We hypothesize that
temporal interactions carry a signi�cant amount of identify-
ing information, and so our learning model should explicitly
examine such interaction. We present a source independent
representation that encodes some temporal aspects of a data
stream.

One popular and highly general class of machine learning
techniques is instance based learning (IBL), [AKA91]. In
this model, the concept of interest is implicitly represented
by a set of instances that exemplify the concept (the instance
dictionary). A new instance is classi�ed according to its
relation to stored instances. A typical scheme is k-nearest-
neighbor classi�cation, in which a new instance is given the
label of the majority of the k dictionary instances closest to
it, where `closest' is a domain speci�c measure but is often
taken to be the Euclidean distance. IBL techniques may be
contrasted to learning techniques that build explicit models
of the data, such as summary statistics or decision trees
[Qui93].

Some work is required to adapt the anomaly detection
task to the IBL learning framework. In particular, we need
to settle on a �xed-length vector (feature vector) represen-
tation of the data and to de�ne the concept of `closeness' or
similarity of two vectors. We also need a di�erent decision
process than the popular nearest-neighbor rules. Because
the space of possible malicious behaviors and intruder ac-
tions is potentially in�nite, it is impractical to characterize
normal behavior as a contrast to known abnormal behaviors.
It is also desirable, for privacy reasons, that an user based
anomaly detection agent only employ data that originates
with the pro�led user or is publicly available. This require-
ment leads to a learning situation in which only positive in-
stances are available. Learning from positive examples only
presents a challenge for classi�cation as it can easily lead to
overgeneralization [Iba79].

A widely acknowledged di�culty with instance based
learning techniques is the overhead incurred by explicitly
storing a set of class exemplars. In a dynamic environment
with no �xed set of training data, such as anomaly detec-
tion, the size of the instance dictionary can conceivably grow
without bound. Thus, it is necessary to consider data reduc-
tion techniques to reduce the resource consumption of the
IBL system. Possible solutions include removal of instances
from the dictionary and re-representation of instances in an-
other, less space intensive, form. In this paper, we explore
the use of clustering algorithms to reduce dictionary size.
In this formulation, a group of similar instances is replaced
with a single exemplar instance.

In the rest of this paper, we examine methods for rep-
resenting the anomaly detection domain as an IBL task,
including a temporal encoding of discrete data streams and
a de�nition of similarity that encodes some aspects of tem-
poral sequence data. We present a clustering technique for
data reduction in this domain. We �nish with an empirical
examination of performance at di�erentiating users under
this learning scheme.

2 Learning from Temporal Sequence Data

Many traditional approaches to learning from temporal se-
quence data are not applicable to the anomaly detection
domain, when the base data consists of discrete, unordered

(i.e. nominal-valued) elements such as command strings. For
time series of numeric values, techniques such as spectral
analysis [OS89], principle component analysis [Fuk90], near-
est neighbor matching, (; �)-similarity [BDGM97, DGM97],
and neural networks [CO96] have proven fruitful. Such tech-
niques typically employ a Euclidean distance or a related
distance measure de�ned for real-valued vectors.

There are a number of learning algorithms that are amenable
to learning on spaces with nominal-valued attributes, but
they typically make the assumption of independence of at-
tributes. For example, decision trees [Qui93] are well suited
to representing decision boundaries on discrete spaces. The
bias used to search for such structures generally employs a
greedy search that examines each feature independently of
all others. This bias ignores internal relations arising from
causal structures in the data generating process.

One method of circumventing this di�culty is to con-
vert the data to an atemporal representation in which the
causal structures are represented explicitly. Norton (1994)
and Salzberg (1995) each independently used such a tech-
nique for the domain of learning to recognize coding regions
in DNA fragments. DNA coding, while not temporal, does
exhibit interrelations between positions that are di�cult for
conventional learning systems to acquire directly. The fea-
tures extracted from the DNA sequences were selected by
domain experts, and cannot be generalized to other sequen-
tial domains. Although such an approach could be applied
to the anomaly detection domain, it would require consider-
able e�ort on the part of a domain expert, and the developed
features would apply only to that data source. We are in-
terested in developing techniques that can be applied across
di�erent data sources and tasks.

Our approach is based on a similarity measure that trans-
forms the native data format (a stream of discrete events)
into a metric space. Classi�cation is performed via an IBL
technique that selects decision thresholds not on distance
to members of di�erent classes, but on probability of falling
within known patterns. In this section, we describe the sim-
ilarity measure we employ and describe the classi�cation
procedure in the transformed space. We end with a descrip-
tion of several data reduction methods for this domain.

2.1 The Similarity Measure

Currently, our similarity measure treats only sequences of
tokens of equal, �xed length. Tokens may be any symbols
drawn from a discrete, �nite, unordered alphabet (e.g. GUI
events, UNIX command names, keystrokes, system calls,
etc.). For a length, l, the similarity between sequences
X = (x0; x1; : : : ; xl�1) and Y = (y0; y1; : : : ; yl�1) is de�ned
by the pair of functions:

w(X;Y; i) =

�
0 if i < 0 or xi 6= yi
1 +w(X;Y; i� 1) if xi = yi

(where w(X;Y; i) = 0 for i < 0 so that w(X;Y; 0) is well
de�ned when x0 = y0) and

Sim(X;Y) =

l�1X
i=0

w(X;Y; i):

The converse measure, distance, is de�ned to be:

Dist(X;Y) = Simmax � Sim(X;Y):

151



The function w(X;Y; i) accumulates weight linearly along
matching subsequences, and Sim(X;Y) is the integral of to-
tal weight over time. In the limiting case of identical se-
quences, this measure collapses to Simmax = Sim(X;X) =Pl

i=1 i =
l(l+1)

2 . Thus, a run of contiguous matching tokens
will accumulate a large similarity, while changing a single
token in the middle of the run can greatly reduce the over-
all similarity. This measure depends strongly on the inter-
actions between adjacent tokens as well as comparisons be-
tween corresponding tokens in the two sequences (i.e. tokens
at the same o�set, i, within each sequence). The sequence
length, l, is a user-dependent parameter and was explored
in [LB97a] where l = 10 was found to be an acceptable com-
promise across users.

A user pro�le is a collection of sequences, D, selected
from a user's observed actions.1 The similarity between the
pro�le and a newly observed sequence, X, is de�ned to be:

SimD(X) = max
Y2D

fSim(Y;X)g:

This rule is related to the 1-nearest-neighbor classi�cation
rule, although we are not actually performing classi�cation
at this stage but, rather, are de�ning similarity to known
patterns. We examined the possibility of using an average
similarity to the entire pro�le, but found that such a measure
had much lower accuracy than the measure given here. Such
an average decreases the ability of the classi�er to resolve
�ne-structure patterns in the classi�cation space.

The design of this similarity measure was motivated by
the observation that human-computer interaction is a fun-
damentally causal process; the computer responds to the
human's request and the human, in turn, responds to the
computer's output. Weighting of adjacent matches is an at-
tempt to capture the short-term causal linkages in the user's
input stream. Other similarity measures for the anomaly de-
tection domain have been examined in [LB97c], and it was
shown that the similarity measure described here is e�ec-
tive for anomaly classi�cation across a number of di�erent
pro�led users.

2.2 Segmenting the Event Stream

Because our similarity measure is de�ned only for �xed length
sequences, it is necessary to partition the raw event stream
into component sequences. This raises the question of op-
timal sequence alignments: where should each sequence be
de�ned to start? Our approach is post hoc, initially segment-
ing the data stream into all possible overlapping sequences
of length l (thereby replicating each token l times). Thus,
every position, i, of the event stream is considered to be the
starting point for a sequence of length l referred to as the
ith sequence or the sequence at time step i. After instance
selection (see below), the sequences remaining in the pro�le
are considered to de�ne the desired alignments.

2.3 Classi�cation Procedure

The similarity-to-pro�le measure de�nes a transformation
from the original, l-ary nominal space to a one-dimensional,
real-valued space in which a point set (command trace), T,
appears as a probability distribution, PT over possible sim-
ilarity values, v. Given su�ciently accurate models of the

1The question of guaranteeing that the observed history used to
pro�le a user actually originates with that user is a critical one, but
we do not examine that problem here, instead taking the known data
to be accurate by assumption.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

Similarity to profile

F
re

qu
en

cy

U3

U6

Bayes−optimal threshold         
Acceptable False Alarm threshold

Figure 1: Comparison of unweighted Bayes-optimal decision
boundary and acceptable false alarm rate boundary. The
rightmost curve (user U3) represents the pro�led user.

distribution of normal and abusive actions, we could simply
construct a Bayes-optimal decision boundary [Fuk90] and
proceed with classi�cation. Because we possess data only
from the pro�led user, the Bayes-optimal boundary is un-
observable to us. Furthermore, for most of the data sets we
have examined, the unweighted Bayes-optimal threshold is
overly critical of the pro�led user. In the example of Figure
1, normal (U3) and anomalous (U6) similarity distributions
are displayed together with the Bayes-optimal classi�cation
threshold and an alternative possible classi�cation thresh-
old (the acceptable false alarm threshold, described below).
Sequences whose similarity to the pro�le falls to the right of
the classi�cation threshold are labeled normal while points
falling to the left are labeled abnormal. The area under
distribution U3 and to the left of the threshold is then the
false alarm probability (the probability of the valid user be-
ing falsely accused of being anomalous) while the area un-
der distribution U6 and to the right of the threshold is the
probability of falsely accepting an anomalous user. In this
example, employing the unweighted Bayes-optimal thresh-
old for classi�cation yields an unacceptably high false alarm
rate. In light of these considerations, we must seek another
method for selecting a decision boundary. Conveniently, the
constraints of our domain provide us with a practical heuris-
tic: reduce the false alarm rate. For a given pro�le, D, we
choose an `acceptable' false alarm rate, r, and set the deci-
sion boundaries according to the rule:

class(v) =

�
1 if PT(v) � r
0 if PT(v) < r

where v is the similarity of a sequence to be classi�ed to D,
1 denotes `normal', and 0 denotes `anomalous'. Acceptable
false alarm rate is a site-speci�c value, de�ned by security
policy.

In practice, we have found that the similarity stream,
produced by comparing an input data stream to a pro�le,
is far too noisy for e�ective classi�cation (Figure 2, (a)).
We attribute the high degree of noise to natural variations
in the user's actions and patterns. For example, the user
may temporarily suspend writing a paper to deal with ur-
gent incoming email, thus disrupting his or her standard
paper writing routine. Such a disruption will appear as a

152



0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

35

40

45

50

55

Time

S
im

ila
rit

y 
to

 p
ro

fil
e

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

35

40

45

50

55

Time

S
im

ila
rit

y 
to

 p
ro

fil
e

(a) (b)

Figure 2: Unsmoothed (a) and mean-smoothed (b) similarity stream.

spuriously low similarity spike within an overall high simi-
larity period. A time average of the similarity signal yields
a much more stable data stream (Figure 2, (b)). We there-
fore employ a noise reduction �lter before selecting decision
thresholds or performing classi�cation. For the work de-
scribed here, we employ a trailing window mean value �lter
de�ned as:

vD(j) =
1

W

jX
i=j�W+1

SimD(i)

where SimD(i) is the similarity of the ith token sequence to
the user pro�le D, W is the window length, and vD(j) is the
�nal value of sequence j with respect to D. A small W is
desirable because the window length de�nes the minimum
time before any detection can occur. While a great deal of
damage can be inicted in less than the window length, such
short term attacks can be more readily handled by match-
ing known attack signatures [KS94]. We are primarily con-
cerned here with the class of long-term, low-pro�le attacks
such as resource theft or industrial data theft.

2.4 Storage Reduction: Instance Selection

A widely acknowledged weakness of instance-based learning
algorithms is the large data storage requirement for accurate
classi�cation. A number of techniques have been examined
for reducing this memory overhead, many of which are re-
viewed by Wilson and Martinez (1997). In an operational
setting, data reduction is critical as the size of the data di-
rectly impacts the time required for classi�cation.

We note, �rst, that the chosen similarity measure selects
only a single historical sequence as most similar to a given
input sequence. If we assume that the characteristics of a
user's behavior change relatively slowly, we can invoke local-
ity of reference to predict that recently matched dictionary
sequences will be used again for detection in the near future.
This suggests an analogy to tasks in operating systems, such
as page replacement, in which some resources must be re-
leased in favor of others.

To examine this analogy, we implemented the least-recently-
used (LRU) pruning strategy. As new instances are ac-
quired and classi�cation is performed, the pro�le instance
selected as most similar is time-stamped. The pro�le is con-
strained to the desired size by removing the least-recently-
used sequences. By analogy, we also constructed and tested

the pruning heuristics FIFO (equivalent to preserving the
most recently stored n sequences), LIFO (preserve the old-
est n sequences), and LFU (remove least frequently used
sequences). In other work, [LB97b], we have examined the
properties of each of these methods. We found that instance
selection could reliably reduce the data storage requirements
with small or no accuracy losses. The best instance selection
method was found to be user dependent.

3 Storage Reduction: Clustering

A second method of reducing data storage is to modify the
representation of sets of points within the data space. For
example, Salzberg (1991) represented sets of points as hyper-
rectangles. We propose a greedy clustering algorithm which
builds individual clusters consecutively, attempting to min-
imize the criterion:

val(C) =

P
x2C

P
y2C

Dist(x;y)

jCj2

for each cluster C. This measure is a generalization of the
mean inter-cluster distance employed for clustering [Fuk90].
From an initial seed point, the cluster is grown incrementally
by including the point that increases val(C) the least, until
the halting criterion is reached. Growth is halted when the
cluster value reaches a local minimum. Because, in some
cases, the cluster value monotonically approaches Simmax,
the halting criterion we actually use is that the �rst deriva-
tive of val(C) be within � of 0 for some (empirically selected)
value of �. As each sequence is added to a cluster, it is re-
moved from the set of available sequences. When the cluster
is complete, we de�ne the center of the cluster, Ccent, to be
the point possessing the minimum total distance to all other
points in C. The similarity between a sequence, X, and a
cluster is then Sim(X;Ccent).

In practice, we have found that this cluster selection al-
gorithm is somewhat too lenient | it accepts points that
decrease the cluster's e�ectiveness in classi�cation. We solve
this in a manner analogous to the pruning process employed
in decision tree learning [Qui93]. After growing a single clus-
ter to completion according to the halting criterion, the clus-
tering algorithm removes outlying points and returns them
to the pool of available sequences (so that they have the
possibility of contributing to di�erent clusters). Our prun-
ing function removes points from the cluster that fall outside

153



the cluster mean radius | i.e. points whose distance to the
center is greater than the mean distance to the center of all
points in the cluster. Points falling within the mean radius
are discarded and removed from further consideration and
the �nal cluster is represented only by its center and mean
radius. Because similarity to a cluster is computed only in
terms of the cluster center, we realize substantial space sav-
ings by discarding all cluster elements other than the center.

The complete clustering algorithm is structurally similar
to the single cluster construction algorithm. We sequentially
select individual clusters by their ability to maximize the
analog of mean intra-cluster distance:

valfC1;C2; : : : ;Cng =

nX
i=1

nX
j=1

Dist(Ci;cent;Cj;cent):

In this case, we found the single cluster halting criterion
to be ine�ective because, typically, all of a data set's points
were exhausted before the derivative of the intra-cluster dis-
tance approached 0. When we allowed the clustering pro-
cess to absorb all available points, many of the clusters were
found to either not contribute to classi�cation accuracy or
to be actively harmful. Instead, we halt the clustering pro-
cess when the the minimum inter-cluster value of all current
clusters falls below a threshold, C. Currently, we select C
empirically.

4 Empirical Evaluation

In this section we describe the requirements for an anomaly
detection system and the measures that we use to charac-
terize our technique in terms of those requirements. We
proceed to present summaries of our experimental results,
characterizing the data sets (users) for which our approach
is successful. Finally, we demonstrate that the greedy clus-
tering algorithm is e�ective in reducing pro�le size while
maintaining accuracy, but that K-centers clustering is un-
able to do so in this domain.

4.1 Performance Criteria

The goal in the anomaly detection task is to identify poten-
tially malicious occurrences while falsely agging innocuous
actions as rarely as possible. We shall denote the rate of in-
correctly agging normal behaviors as the false alarm rate
and the rate of failing to identify abnormal or malicious be-
haviors as the false acceptance rate. Under the null hypoth-
esis that all behavior is normal, these correspond to type
I and type II errors, respectively. For the detector to be
practical, it is important that the false alarm rate be low.
Users and security o�cers will quickly learn to ignore the
`security system that cried wolf,' if it ags innocuous behav-
ior too often. Finally, a practical security system must be
resource-conservative in both space and time. The goal of
security is to enhance productivity, not inhibit it through
consumption of system resources.

Detection accuracy does not, however, reveal the full
story. A second issue of importance is time to detection.
This quantity is de�ned to be the average time between when
the detector is initialized and when it ags an anomalous
condition, and is a measure of how quickly an anomalous or
hostile situation can be detected. In the case of false alarms,
the time to detection represents the average time from ini-
tialization until a false alarm occurs. Thus, we wish the
time to detection to be short for hostile users so that they
can be dealt with quickly and before doing much harm, but

long for the valid user so that normal work is interrupted by
false alarms as seldom as possible.

Because we are examining command line data in this
work (see below), we measure all detection times in token
counts rather than wall clock time. Token count is more
nearly correlated with the quantity of interest | how much
damage can be accomplished by a hostile user before detec-
tion | than is wall clock time.

4.2 Comparison to Current Anomaly Detection Systems

Baselining our results relative to other well known anomaly
detection systems such as (N)IDES [LJ88, Lun90], HAYSTACK
[Sma88], and NSM [HDL+90] proved to be impossible. The
descriptions of these systems tend to focus on architecture
and omit performance measures. Spa�ord [Spa98] reports
being unaware of the publication of any performance mea-
sures for intrusion and anomaly detection systems other
than IDIOT [Kum95] in refereed forums. IDIOT is an in-
trusion detection system which employs a pattern matching
algorithm to detect known attack signatures in audit data.
Its patterns are not intended to generalize to unknown cases,
so rather than accuracy, time and space performance mea-
sures are reported.

4.3 Data

Of the literally thousands of possible data sources and fea-
tures that might characterize a system or user, we chose to
examine UNIX shell command data. The UNIX operating
system is widely used and has been extensively studied in
both the security and operating systems communities. The
user environment is highly con�gurable with a rich command
language and permits a large range of possible behaviors. In
the UNIX model, most user interactions take place through
a command line environment (a shell), so command data is
strongly reective of user activities. Finally, there are avail-
able mechanisms to make collection of shell command data
convenient in the UNIX environment.

Lacking shell traces of actual misuse or intrusive behav-
iors, we demonstrate the behavior of the detection system on
the task of di�erentiating di�erent authorized users of the
UNIX hosts in the Purdue MILLENNIUM machine learning
lab. In this framework, an anomalous situation is simulated
by testing one legitimate user's command data against an-
other legitimate user's pro�le. This framework simulates
only a subset of the possible misuse scenarios | that of a
naive intruder gaining access to an unauthorized account |
but it allows us to evaluate the approach. It is to be hoped
that the \naive intruder" scenario constitutes a large enough
fraction of all attacks that progress in this domain will be of
practical bene�t. Nonetheless, we acknowledge our inabil-
ity to generalize these result to broader de�nitions of abuses
until we are able to test these techniques against real misuse
data.

We have acquired shell command data from eight di�er-
ent UNIX users over the course of more than a year. The
data events were tokenized into an internal format usable
by the anomaly detector. In this phase, command names
and behavioral switches were preserved, but �le names were
omitted under the assumption that behavioral patterns are
at least approximately invariant across �le names. The
pattern `vi <file> gcc <file> a.out', for example, repre-
sents the same class of action regardless of whether <file>
is homework1.c or cluster.c. The amount of data avail-
able varied among the users from just over 15,000 tokens to
well over 100,000 tokens, depending on their work rates and

154



Tested Pro�led User
User U0 U1 U2 U3 U4 U5 U6 U7
U0 99.3 57.0 31.7 61.0 75.1 0.6 38.5 10.1
U1 14.9 92.9 12.4 64.2 16.3 0.9 4.0 6.0
U2 41.3 58.7 94.7 43.6 71.1 0.3 47.9 8.3
U3 64.8 91.7 46.7 90.0 86.4 0.6 69.0 15.1
U4 34.4 21.2 18.6 72.1 92.7 1.3 8.6 3.0
U5 50.4 68.3 39.7 70.3 78.0 99.9 57.2 29.4
U6 41.8 15.4 17.7 82.3 48.7 0.6 91.7 4.7
U7 24.7 11.0 8.7 40.7 22.1 0.6 5.8 96.2

Table 1: Correct classi�cation percentages for all pro�les
and test sets.

when each user entered and left the study. For uniformity
in testing, we selected the earliest (in calendar time) 15,000
tokens from each user, representing an average of approxi-
mately six months of usage per person.

4.4 Unclustered Pro�le Results

Each user's data was split into separate train set (1,500 to-
kens), parameter selection set (1,500) tokens, and test set
(12,000 tokens). Each train set was then used as the basis
for a pro�le, and the classi�cation boundaries were selected
according to the distribution of the parameter selection data
with respect to the pro�le. Finally, false accept and false
alarm rates were generated for each pro�le and each test
set. We present the results in Table 1 for the best global
choice of parameters. The values along the main diagonal
of this table are generated by comparison of a user to his or
her pro�le and represent percent true acceptance. The o�-
diagonal elements are generated by testing one user against a
di�erent user's pro�le and represent percent true detections.
These results were achieved with acceptable false alarm rate
r = 2%, sequence length l = 10, and mean �ltering with
window length W = 21 sequences. Note that if we vary
the parameters on a per-user basis we can achieve higher
accuracies.

A number of points are key in this table. First, the main
diagonal (correct classi�cations of the valid user) is uni-
formly high. For six of the users the achieved self-detection
accuracy is lower than the 98% speci�ed by the chosen ac-
ceptable false alarm rate. This is a result of the parameter
selection data (used for decision threshold selection) fail-
ing to reect the true distribution of the user's behaviors.
This problem also leads to increased false accept rates. The
most dramatic illustration of this problem is visible in user
5's pro�le. On examination of user 5's command data, we
discovered that the user had largely changed tasks between
generation of the training and threshold selection data (from
tasks concerned mainly with system maintenance to pro-
gramming tasks). In this case, the particular skew of the
parameter estimation data resulted in an extremely wide
range of similarities, yielding decision thresholds that clas-
si�ed nearly everything as the valid user. The overly lenient
decision boundaries also produced a spuriously high self-
detection accuracy.

A second source of false accept error is demonstrated
in Figure 3. Here, U1 (the valid user) and U7 have many
behaviors in common | mostly `generic' account mainte-
nance such as directory creation and �le copy and remove
operations. This high degree of similarity is reected in the
substantial overlaps in the similarity distributions, making
di�erentiation impossible within this space. By contrast, U3
was engaged mainly in programming and writing during this

0 5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

Similarity to profile

F
re

qu
en

cy

U1

U7

U3

Figure 3: False accept errors: U7's data bears high resem-
blance to the pro�led user's (U1).

.

time. There are two possible sources for the degree of over-
lap between U1 and U7. First, the underlying observations
do not encode su�cient information to distinguish the two
users. Many other data sources are available for user pro-
�ling and could be used in conjunction with the techniques
presented here in an operational security system.2 The sec-
ond, and more fundamental, source of error is in the simi-
larity measure itself. The measure presented in this paper
is fairly coarse (having only O(l2) possible values for a se-
quence length of l), and models only a single type of tempo-
ral interaction. We are currently investigating more sophis-
ticated similarity measures such as edit distance [CLR92].

4.5 Time to Detection

As explained previously (Section 4.1), we also wish to ex-
amine the mean time to detection for the base system. We
measured detection times on data from the same users tested
above, with false alarm rate r = 2%, sequence length l = 10
tokens, and smoothing window length W = 81 sequences.
The longer window length improves overall time to detec-
tion �gures and is presented here to demonstrate potentially
achievable times. The relation between window length and
time to detection is covered in more detail in [Lanar]. For
reasons of time, smaller subsets of the available data were
chosen, with 5,000 tokens devoted to training, 1,000 to pa-
rameter selection, and 1,000 to test.3 A larger training set
was chosen to mitigate the e�ects of behavioral changes that
we see in the previous section, by representing a larger range
of behaviors in the user pro�le.

Time to detection values for all pro�le/test pairs are
given in Table 2. Here we wish the values to be high for
a user tested against him or herself (indicating infrequent
false alarms), but small for other pairings (indicating rapid
detection of anomalous circumstances on average). Thus,
we desire large values on the main diagonal of the table,
and small values o� the diagonal. Delays in time to de-
tection introduced by the sequence length (l = 10 tokens,

2A number of such data sources are described in [Den87, LJ88,

Sma88, HDL+90].
3In the extended version of this paper, we will present uni�ed

results under the same parameter settings used above, though we
expect such changes to have little impact on the general nature of the
results.

155



Tested Pro�led User
User U0 U1 U2 U3 U4 U5 U6 U7
U0 58.8 76.6 2.8 3.7 2.1 21.0 0.0 0.0
U1 20.3 172.7 2.1 1.8 1.9 48.0 0.0 0.6
U2 0.0 0.0 94.3 0.0 0.6 0.0 0.0 0.0
U3 335.4 395.4 133.7 376.1 28.8 110.9 181.8 70.6
U4 58.4 67.9 0.5 6.7 157.7 12.0 0.1 6.8
U5 238.1 229.5 227.6 456.0 171.5 108.6 456.0 456.0
U6 179.0 100.8 21.5 44.9 56.5 50.0 205.5 33.6
U7 0.0 7.8 8.5 0.9 0.9 1.0 8.0 259.5

Table 2: Times to detection for each pro�le and test data set.

see Section 2.1) and the noise suppression smoothing win-
dow (W = 81 sequences, see Section 2.3) have been omitted
from this table, as they represent constant factors across all
tests.

We see from Table 2 that the detection system is display-
ing desirable behaviors. In general, the time to detection
for the pro�led user (i.e. time to generation of a false alarm,
appearing on the main diagonal) is long relative to time to
detection for alternate users against that pro�le (i.e. time to
detection of an anomaly, in the non-diagonal elements and
reading column-wise).

Examination of the raw classi�cation data reveals that
the time to detections are not equivalent to the (inverse)
mean detections per unit time. Speci�cally, the false alarms
tend to occur in tight clusters interspersed between long
strings of true accepts, yielding an overall long time to de-
tection for the true user. True detections, on the other hand,
tend to be more evenly distributed, yielding a shorter ex-
pected time to detection. Indeed, in many cases, time to
detection is 0.0, indicating that, on average, the anomalous
situation is detected in l+W = 91 tokens, the minimum pos-
sible time. Thus, this detection system is biased toward de-
tecting anomalous conditions quickly, while generating false
alarms in rare clusters. This type of behavior is desirable
because a valid user wishes to be bothered as little as pos-
sible and a tight group of false alarms can be investigated
and disregarded as a group, while a malicious user can be
discovered quickly from only a single true alarm.

4.6 Clustering Techniques

To examine the e�ectiveness of the greedy clustering algo-
rithm, we produced clustered versions of all of the user pro-
�les from the �rst experiment (Section 4.4) for various values
of C (the clustering halting threshold). As baseline compar-
ison, we implemented the K-centers clustering algorithm.
K-centers is an iterative clustering algorithm that attempts
to make class assignments to K di�erent clusters simulta-
neously through gradient descent on the log-likelihood pa-
rameter space, and is a special case of the EM (expectation
maximization) algorithm, [Rip96].4 Table 3 shows the av-
erage and standard deviation of false alarm rate for each
user (U0{U7) and clustering method. These values were ob-
tained with greedy clustering halting criteria ranging across
the values � = 0:005 (single cluster) and C 2 f0:25; 0:5; 0:75g
(all clusters). K-centers was given K 2 f50; 75; 100g and al-
lowed to run 10,000 iterations. All algorithms were run for
both mean and median �lters.

4K-centers is closely related to K-means, but requires that the clus-
ter exemplar be drawn from the cluster members rather than being
an interpolation of them. For vectors of unordered, discrete elements
(such as UNIX commands), no mean value is available, so the exem-
plar must be a cluster element.

We see that the false alarm rates are generally low and
that greedy clustering matches or outperforms k-centers clus-
tering for �ve of the users. Both clustering methods have
higher false alarm rates than does unclustered.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

False accept rate: Unclustered profile

F
al

se
 a

cc
ep

t r
at

e:
 G

re
ed

y 
cl

us
te

re
d 

pr
of

ile

Figure 4: Relative false accept rates for the unclustered and
greedy clustered pro�les. The diagonal indicates equal per-
formance.

The relative false accept rates of the unclustered and
greedy clustering approaches are displayed in Figure 4. Here,
the false accept rate for greedy clustering appears on the
vertical axis while the rate for unclustered appears on the
horizontal. Each plotted point is a single user/pro�le pair
and the diagonal line indicates equal performance. Points
to the left of the line indicate superior performance by the
unclustered technique, while those below denote higher per-
formance by greedy clustering. We see that most points fall
fairly close to the line, indicating that greedy clustering gen-
erally incurs only a small accuracy hit. Mitigating the loss
of accuracy is data reduction; for these parameters, greedy
clustering achieved an average of 70% reduction. Because
the classi�cation algorithm runs in time O(njDj) for a n

input sequences and a pro�le containing jDj instances, we
expect to obtain a corresponding 70% improvement in clas-
si�cation speed. In practice, we found that classi�cation of
the entire 12,000 token test set on a Sparc Ultra 1 required
four minutes without clustering, but only one minute with.5

While the greedy clustering algorithm typically formed
over 200 clusters per pro�le, we found that K-centers did not
converge to an acceptable solution in a reasonable period
of time (10,000 iterations) for K = 200. K = 100 also

5Amortized across the entire six-month period of the test data,
this represents less than two thousandths of a percent of the CPU's
time.

156



Pro�led User
Clustering U0 U1 U2 U3 U4 U5 U6 U7
Greedy 1.1/0.6 6.6/1.1 4.8/0.9 6.6/4.0 4.4/2.9 0.5/0.4 8.8/3.3 4.4/1.0
K-centers 7.5/3.0 6.6/2.2 5.7/2.4 4.7/1.8 2.4/2.1 3.4/1.7 22.4/3.1 1.7/0.7
None 0.3/0.4 2.2/3.1 1.4/2.1 1.9/3.7 1.6/2.7 0.2/0.3 3.2/4.5 1.4/2.1

Table 3: False alarm rates (percentage) for each clustering method, averaged across all parameter values and �ltering methods.
Standard deviations are given after the slash.

did not halt, but did achieve somewhat higher performance
than did K = 200. Its false accept error rate, averaged
across all users, parameters, and �ltering methods, (77.0%)
is dramatically worse than either that of greedy clustering
(67.0%) or no clustering (66.6%).

We note, in passing, that the clusters constructed by the
greedy clustering algorithm make intuitive sense, in terms
of the actions being performed by the underlying sequences.
For example, we have identi�ed clusters that correspond to
`programming', `paper writing', `reading email', and `navi-
gating directories'.

5 Conclusions and Future Work

This work has demonstrated a technique for mapping the
temporal data occurring in the anomaly detection task onto
a space in which IBL learning can be formulated. The results
demonstrate that this technique can be useful in such tasks
when the underlying data supports su�cient class separa-
tion. Furthermore, the system is biased toward detecting
anomalous conditions quickly, but generating false alarms
rarely. We showed a new clustering technique based on se-
quential, greedy selection of clusters. The greedy clustering
technique was able to produce a large saving in storage re-
quirements, with an overall small loss in accuracy. K-centers
clustering was unable to match the performance of greedy
clustering in this domain in either convergence rate or de-
tection accuracy.

While the algorithm reported here is probably insu�-
cient for standalone anomaly detection, there are a number
of ways in which it could easily be augmented to improve
accuracy and decrease time to detection. We are currently
examining other similarity measures for the anomaly detec-
tion domain based on edit distance and on hidden Markov
models of behavioral patterns. More sophisticated similarity
measures would likely improve class separability and, there-
fore, system accuracy. We are also examining the e�ects of
changes in user behaviors over time. As noted in Section
4.4, a change in user behaviors between gathering the user
pro�le and employing it for user classi�cation can lead to
an extremely distorted and inaccurate picture of the user's
typical behaviors. We are developing techniques to dynam-
ically adapt the pro�le to user changes over time, yet not
adopt uctuations arising from hostile or anomalous activ-
ities. We note, too, that the techniques developed here are
intended to be task independent and we employed little do-
main knowledge in their design. By adding a greater degree
of a priori knowledge (e.g. on the advice of a site security
specialist), system performance could likely be improved yet
further.

The system presented here possesses a number of param-
eters that must be set: sequence length, l, target false alarm
rate, r, noise suppression window length, W , and greedy
cluster halting criteria � and C. The results presented here
apply single parameter settings to all users and pro�les si-
multaneously. We have found that there is a signi�cant im-

pact of parameter settings on both detection accuracy and
time to detection. If the parameters can be properly set on a
per-pro�le basis, then global accuracy can doubtless be fur-
ther improved. We are currently investigating methods for
automatically adapting system parameters to the pro�led
user.

Finally, the algorithms employed here could be imple-
mented as single detection elements in an overall anomaly
detection scheme that also employs alternative data sources
such as biometric measurements, resource consumption mea-
surements, and activity time-of-day. Such ensemble classi-
�cation methods are well known in the machine learning
community, [Sch94], and the body of theory surrounding
them there could be directly applied to this domain.

In summary, we have presented a machine learning ori-
ented approach to anomaly detection. We have demon-
strated that it is possible to learn to distinguish anomalous
behavior patterns from normal under this type of framework.
We believe that, in general, both the computer security and
machine learning communities can bene�t from further in-
teractions. The ML community has studied many pattern
recognition techniques which could be valuable to a variety
of security problems, while computer security tasks present a
number of challenging issues that can motivate new research
directions for the machine learning community.

References

[AKA91] D. Aha, D. Kibler, and M. Albert. Instance-
based learning algorithms. Machine Learning,
6(1):37{66, 1991.

[BDGM97] B. Bollob�as, G. Das, D. Gunopulos, and
H. Mannila. Time-series similarity problems
and well-separated geometric sets. In 13th An-
nual ACM Symposium on Computational Ge-
ometry. Association for Computing Machinery,
1997.

[CLR92] Thomas HOA. Cormen, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to algo-
rithms. The MIT Press, Cambridge, MA, 1992.

[CO96] T. Chenoweth and Z. Obradovic. A multi-
component nonlinear prediction system for the
S&P 500 index. Neurocomputing, 10(3):275{
290, 1996.

[Den87] D. E. Denning. An intrusion-detection model.
IEEE Transactions on Software Engineering,
13(2):222{232, 1987.

[DGM97] G. Das, D. Gunopulos, and H Mannila. Find-
ing similar time series. In Proceedings of The
Fourth International Conference on Knowledge
Discovery and Data Mining, August 1997.

157



[Fuk90] K. Fukunaga. Statistical Pattern Recognition
(second edition). Academic Press, San Diego,
CA, 1990.

[FV95] D. Farmer and W. Venema. SATAN overview
(Security Administrator Tool for Analyzing
Networks). Electronic release, Mar 1995. Pro-
gram documentation for the SATAN/SANTA
tool.

[Gor96] S. Gordon. Current
computer virus threats, countermeasures, and
strategic solutions. White paper, McAfee Asso-
ciates, 1996.

[HDL+90] L. T. Heberlein, G. V. Dias, K. N. Levitt,
B. Mukherjee, J. Wood, and D. Wolber. A net-
work security monitor. In Proceedings of the
1990 IEEE Symposium on Research in Security
and Privacy, pages 296{304, May 1990.

[Iba79] G. A. Iba. Learning disjunctive concepts from
examples. Master's thesis, Massachusetts Insti-
tute of Technology, September 1979.

[KS94] S. Kumar and E. Spa�ord. An application of
pattern matching in intrusion detection. Tech-
nical Report CSD-TR-94-013, Purdue Univer-
sity, West Lafayette, Indiana, Jun 1994.

[Kum95] S. Kumar. Classi�cation and detection of com-
puter intrusions. PhD thesis, Purdue Univer-
sity, W. Lafayette, IN, 1995.

[Lanar] T. Lane. Filtering techniques for rapid user
classi�cation. In Proceedings of the AAAI-
98/ICML-98 JointWorkshop on AI Approaches
to Time-series Analysis, 1998, to appear.

[LB97a] T. Lane and C. E. Brodley. An application
of machine learning to anomaly detection. In
National Information Systems Security Confer-
ence, Baltimore, MD., 1997.

[LB97b] T. Lane and C. E. Brodley. Detecting the ab-
normal: Machine learning in computer security.
Technical Report TR-ECE 97-1, Purdue Uni-
versity, School of Electrical and Computer En-
gineering, West Lafayette, IN, 1997.

[LB97c] T. Lane and C. E. Brodley. Sequence matching
and learning in anomaly detection for computer
security. In Proceedings of AAAI-97 Workshop
on AI Approaches to Fraud Detection and Risk
Management, 1997.

[LJ88] T. F. Lunt and R. Jagannathan. A prototype
real-time intrusion-detection expert system. In
Proceedings of the IEEE Symposium on Secu-
rity and Privacy, pages 59{66, 1988.

[Lun90] T. F. Lunt. IDES: An intelligent system for
detecting intruders. In Proceedings of the Sym-
posium: Computer Security, Threat and Coun-
termeasures, Rome, Italy, 1990.

[Nor94] S. W. Norton. Learning to recognize promoter
sequences in E. coli by modelling uncertainty in
the training data. In Proceedings of the Twelfth
National Conference on Arti�cial Intelligence,
pages 657{663, Seattle, WA, 1994.

[OS89] A. Oppenheim and R. Schafer. Discrete-Time
Signal Processing. Signal Processing. Prentice
Hall, Englewood Cli�s, New Jersey, 1989.

[Qui93] J. R. Quinlan. C4.5: Programs for machine
learning. Morgan Kaufmann, San Mateo, CA,
1993.

[Rip96] B. D. Ripley. Pattern Recognition and Neural
Networks. Cambridge University Press, Cam-
bridge, UK, 1996.

[Sal91] S. Salzberg. A nearest hyperrectangular learn-
ing method. Machine Learning, 6(3):251{276,
1991.

[Sal95] S. Salzberg. Locating protein coding regions in
human DNA using a decision tree algorithm.
Journal of Computational Biology, 2(3):473{
485, 1995.

[SCCC+96] S. Staniford-Chen, S. Cheung, R. Crawford,
M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. GrIDS {
a graph-based intrusion detection system for
large networks. In Proceedings of The 19th
National Information Systems Security Confer-
ence. The National Institute of Standards and
Technology and the National Computer Secu-
rity Center, Oct 1996.

[Sch94] C. Scha�er. Cross-validation, stacking, and
bi-level methods for stacking: Meta-methods
for classi�cation learning. In P. Cheeseman
and W. Oldford, editors, Selecting Models from
Data: Arti�cial Intelligence and Statistics IV.
Springer-Verlag, New York, 1994.

[Sma88] S. E. Smaha. Haystack: An intrusion detection
system. In Proceedings of the Fourth Aerospace
Computer Security Applications Conference,
pages 37{44, 1988.

[Spa98] E. H. Spa�ord. Personal communication, Jan-
uary 1998.

[Wil97] D. R. Wilson. Advances in instance-based learn-
ing algorithms. PhD thesis, Brigham Young
University, Provo, UT, 1997.

158


