Threat Modeling

Keith A. Watson, CISSP, CISA GLSP April 2011 Meeting

Overview of Module 2

- Assets
- Threats
 - STRIDE threat classification system
- Risk
 - DREAD risk rating system
- Threat Modeling

Objectives for Module 2

- Understand the difference between threats and vulnerabilities.
- Apply classification and rating techniques.
- Understand the basic threat modeling process.

Assets

- Assets are items of value to an organization
 - Can be tangible or intangible
- Examples:
 - Organization's reputation
 - Data
 - Processing capabilities
 - Availability of resources
 - Network

Threats

- A threat is an action that an attacker might take to affect an asset
 - unauthorized access, destruction, disclosure, modification of data, and/or denial of service
 - Includes the means and motivation

A threat cannot exist without a target asset

Threat Agents

- Anyone or anything that can impact an asset can be a threat agent
 - Malicious attackers
 - Untrained or inept users or system operators
 - Thieves stealing laptops
 - Animals causing power outages
 - Floods, fires, earthquakes, lightning
- Can intentional or unintentional

Motivation and Skills

- Intentional human attackers are typically driven by some motivation
 - Money (sale of sensitive information)
 - Political (work on behalf of a government org)
 - "Hacktivism" or terrorism (promote a cause)
 - Explorers (non-target specific)
- Skill levels vary widely
 - Script kiddie (untrained, low skill level)
 - Professional criminal (trained, high skill level)

Threat Consequences

- The violations of the security of asset by a threat action
 - Disclosure
 - Deception
 - Disruption
 - Usurpation

STRIDE

STRIDE is a classification system for attacker objectives

Spoofing an identity

Tampering with data

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege

STRIDE

- Some threats can fit into more than one STRIDE category
- What if an attacker:
 - Modifies an employee database

- Spoofs admin access to a server
- Sends malicious code to web browser

STRIDE Exercise

- Handout "Exercise #1"
- Part 1: Match STRIDE attacker objective with threat actions
 - There may be more than one objective per action
- Part 2: Match STRIDE attacker objective with security concepts to prevent the attack
- Take 5 minutes

DREAD

- DREAD is a complement to STRIDE
 - Also promoted by Microsoft
- Risk calculation methodology

Damage Potential

Reproducibility

Exploitability

Affected Users

Discoverability

DREAD Values

- Numbers are assigned to represent extent of damage, percentages, ratios, effort, etc.
 - 30% of users affected
 - Exploits works 1 out 100 attempts
 - 50% of users will experience significant damage
- Each DREAD value should be constrained to range of values that are appropriate
 - 1 to 10
 - 1 to 3

Damage Potential

If a threat exploit occurs, how much damage will be caused?

```
o = Nothing
```

5 = Individual user data is compromised or affected

10 = Complete system or data destruction

Reproducibility

- How easy is it to reproduce the threat exploit?
 - o = Very hard or impossible
 - 5 = One or two steps required, may need to be an authorized user
 - 10 = Easily reproduced, without authentication

Exploitability

- What is needed to exploit this threat?
 - o = Advanced programming and networking knowledge, with custom attack tools
 - 5 = Malware exists on the Internet, or an exploit is easily performed, using available attack tools
 - 10 = Just a web browser

Affected Users

How many users will be affected?

```
o = None (o-10%)
5 = Some users, but not all (%50)
10 = All users (%100)
```

May be dependent on configuration options

Discoverability

- How easy is it to discover this threat?
 - o = Very hard to impossible; requires source code or administrative access
 - 5 = Can figure it out by guessing or by monitoring network traces
 - 9 = Details of faults like this are already in the public domain and can be easily discovered using a search engine
 - 10 = The information is visible in the web browser address bar or in a form

DREAD Risk Calculation

Risk is calculated as an average of the DREAD values: (D + R + E + A +D) / 5 = Risk Rating

o = No risk

5 = Moderate risk

10 = Significant risk

DREAD Exercise

- Handout "Exercise #2"
- Read through the application description and threat findings.
- Evaluate the DREAD risk categories and assign a value to each from o to 10
- Average each category and compute overall risk

Take 10 minutes

STRIDE and DREAD Issues

- STRIDE and DREAD are ways of looking at attacks from the attacker's point of view
- Introduced in the first version of Microsoft's Threat Modeling
- Subjective, requires security knowledge
- Focused on attacks and not threats

Architecture Vulnerabilities

- Finding vulnerabilities in the architecture is not possible with a code review
 - Too close to the code to see the larger issues
 - Code reviews come after the code is written
- No software tool available will automatically find architecture vulnerabilities
- How do developers find architecture vulnerabilities?

Implementation Vulnerabilities

- Reviewing code requires time
 - If the app has 1M LOC, it is not possible to review everything in a reasonable time
- There are software tools available to find implementation vulnerabilities
 - They might find a significant number of issues
- How do developers determine where to focus code review and correction efforts?

Threat Modeling

- Building secure software requires an understanding of the threats
- A threat model is a descriptive analysis of risks to the design of software
 - Identifies weaknesses that must be addressed
- Conducted early in the development process
 - Before code is written

Threat Model Advantages

- Threat models provide insight into the application's internal workings
 - Helps new team members understand the app
 - Allows other teams to understand it as well
 - Testers also benefit in development of tests

Threat Model Methodologies

- There are multiple approaches to threat modeling
- Approaches have evolved over time
- Several organizations have different methods
 - Microsoft Secure SDLC
 - OWASP Threat Risk Modeling
 - Calculative Threat Modeling Methodology
 - Trike
 - Consultative Object Risk Analysis System

Threat Model Documentation

- There is no specific requirements for threat modeling documentation
- The format should based on the development team's needs
- The threat model will serve many purposes and has many audiences
 - Architects and developers
 - Software and security testers
 - Outside reviewers

Threat Model Process

- This model based on Swiderski and Snyder's Threat Modeling book
- Understanding the Attacker's View
- Characterizing the Security of the System
- 3. Determining Threats

Understanding the Attacker's View

- Analyzing Entry and Exit Points
- Determining the Assets
- Examining Trust Levels

Viewpoints

- Attacker's view
 - Application is a black box
 - Outside view of services available
- Architect and Developer's view
 - Application is a white box
 - Understanding is from the inside out
- Threat models allow the development team to use the attacker's viewpoint in order to address security issues

Entry and Exit Points

- The points at which data or control crosses the boundary of the system
- Entry points represent interactions
 - Junctions with external components
 - Attack points

Data Needed:

- Numerical ID
- 2. Name
- 3. Description
- 4. Trust Levels

Determining the Assets

- Assets are what the attacker is interested in
 - Need protection from unauthorized use
- Without assets there is no interest in attack Data Needed:
- Numerical ID
- Name
- 3. Description
- 4. Trust Levels

Examining the Trust Levels

- Representation of the access rights for external entities
 - Authenticated or remote anonymous user
 - Different trust levels based group association

Data Needed:

- Numerical ID
- 2. Name
- 3. Description

Threat Model Process

- Understanding the Attacker's View
- 2. Characterize the Security of the System
- 3. Determining Threats

Characterize the System

- Background information
 - Use scenarios
 - External dependencies
 - External security notes
 - Internal security notes
 - Implementation assumptions
- Modeling the application
 - Data flow diagrams (DFD)

Use Scenarios

- Describe how the system is to be used
 - Or, how it is not to be used
 - Supported and unsupported uses should be listed
- Deals with deployment issues that affect security

Data Needed:

- Numerical ID
- 2. Description

External Dependencies

- List requirements for outside components
 - Dependency on behavior or compliance
 - Development has little control

- Numerical ID
- Description
- 3. External Security Note reference

External Security Note

 Security-relevant information for users that interact with the system

- Numerical ID
- Description

Internal Security Note

- Provide clarification to model readers
- Explain security trade-offs made in the design
 - Business reasons, timeline, costs, etc

- Numerical ID
- Description

Implementation Assumptions

 Assumptions about specific features to be implemented

- Numerical ID
- Description

Data Flow Diagrams

- Modeling the application effectively requires understand how data moves through the system
- DFDs provides visual representation
 - Hierarchical in nature
- Other modeling systems can be used
 - UML
 - Flow charts

DFD Process Primitive

 Process primitive is task that processes data or performs some action based on the data

DFD Complex Process Primitive

- A complex or multiple process contains several sub processes
 - Represents a high-level process in the hierarchy

DFD External Entity Primitive

- External entity is a source or destination of data that exists outside of the system
 - Interacts at an entry point

External Entity

DFD Data Store Primitive

- Repository for data
 - File systems, Files
 - Databases, caches
 - Environment variables, registry

Data Store

DFD Data Flow Primitive

 Data flow represents data transferred between elements

DFD Privilege Boundary

 Defines a boundary between nodes with a different privilege level

`` Privilege Boundary

DFD Level-o Example

DFD Level-1 Example

Exploring DFD Levels

- Each complex process can be broken down and explored to many more detailed levels
 - More information is not always helpful
 - Significant time investment with too many levels
 - Avoid "Analysis Paralysis"

Threat Model Process

- Understanding the Attacker's View
- 2. Characterize the Security of the System
- 3. Determining Threats

Determining Threats

- Identifying threats to the system
- Investigating threats with threat trees
- Mitigating vulnerabilities

Identifying Threats

- Identify attacker goals might try to achieve
 - Acquire an asset
 - Misuse an asset
- Use the system's assets as a starting point
 - Look at high-level attack goals for each asset
- Can the asset be modified?
 - By a non-privileged user?
 - Without detection or auditing?

Identifying Threats

- Numerical ID
- Name
- Description
- 4. STRIDE Classification
- Entry Points
- 6. Assets
- 7. Mitigation

Determining Threats using STRIDE

 Remember STRIDE defines attacker objectives

Spoofing an identity

Tampering with data

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege

Threat trees

- Threats trees show how a threat might be accomplished
 - Attack Paths show the route for a threat
 - Consists of a "root threat" and mitigated and unmitigated conditions
- Can be shown visually in a tree structure
- Can be written in an outline form

Threat Tree Example

Threat Tree Example

- 1. Attacker acquires a username and password
 - 1.1 (AND) Attacker acquires username
 - 1.1.1 Attacker determines username validity from error messages
 - 1.1.2 User discloses username
 - 1.2 (AND) Attacker acquires password
 - 1.2.1 User discloses password
 - 1.2.2 Attacker guesses password

Threat Trees

- Useful for security testing
 - Focus on specific attack paths from the tree
- Show that unmitigated conditions are vulnerabilities
 - Attack paths with one or more unmitigated conditions

- Threat ID
- Tree Nodes

Mitigating Vulnerabilities

- Remember that a threat is not a vulnerability
 - Source of confusion
 - A Vulnerability is weakness that would allow an attacker to take some advantage over an asset
 - A Threat is what an attacker might try to do

Mitigating Vulnerabilities

- Using the threat tree, identify attack paths with unmitigated conditions
 - These are the vulnerabilities that must be addressed
 - Vulnerabilities are the useful outcome from model
- Vulnerabilities should be documented outside of the threat model and referenced
 - Use the application's bug tracking system

Mitigating Vulnerabilities

- Numerical ID
- Name
- Description
- 4. DREAD Rating
- Corresponding Threat
- 6. Assigned Bug ID

Threat Model Process Review

- Understanding the Attacker's View
 - Goals, data flow, entry points, assets, trust levels
 Output: Detailed information on app and access
- 2. Characterize the Security of the System
 - Background info for data flow and processing
 - Output: Data Flow Diagram and Threat tree
- 3. Determining Threats
 - Identifying threats and vulnerabilities
 - Output: Vulnerabilities to be mitigated

Threat Modeling Exercise

- Handout "Exercise #3"
- Work in groups of two
- Look for "Instructions" sections
 - Fill in table data
 - Draw missing primitives in the DFD
- Take 15 minutes

Review

- Assets, Threats, Vulnerabilities
- STRIDE threat classifications
- DREAD risk ratings
- Threat Modeling
 - Attacker's Perspective
 - Understand the system
 - Find the vulnerabilities