SQL Injections

Michael Hill, CISSP =
=
June 14, 2013 ‘/,:’9?"?

e An SQL injection is a computer attack in which malicious code is embedded
in a poorly-designed application and then passed to the backend database.

The malicious data then produces database query results or actions that
should never have been executed.

HI, THIS 1S OH DEAR —DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME N A WAY Robert'); DROP I HOPE YOURE HAPPY.
(OMPUTER TROUBLE. / TABLE Students;-~ 7 \xl

R ! AND T HOPE
~OH,YES UTIE < YOUVE LEARNED
m BOBBY TABLES, T0 SANTIZE YOUR

WE CALL HIM. DATABASE INPUTS,

e Injection flaws have consistently been in the OWASP top 10 list.
e 2004: A6 Injection Flaws
e 2007: A2 Injection Flaws
e 2010: Al Injection
e 2013: Al Injection

Demo Page

_y Demo

= ' [localhost:8888

Demo page for SQL injections

This site was created for demonstration purposes only and these techniques should never be used in a production environment.

The login page is available here

Vulnerable Login Page

&y Bad Login

~ C' [} localhost:8888/badLogin.php

Bad Login Page

Username: anything
Password: 'or'1=1

Submit

SQL Injection - Login

(s Bad Login

1]/

“~ C' [localhost:8888/badLogin.php e ﬂ _&

Bad Login Page

SQL statement: select * from users where username = 'anything' and password =" or '1=1'

Username Submitted: anything PP —

Password Submitted: ' or '1=1 $username = § POST['
$password = $:POST['

Results: Valid User

’/ Returns True or False
$res = badCheckLogin($fusername, }{password):

Check out our Products page
You can leave comments on our Feedback page

function badCheckLogin($user, $pass){
$db = connectDB();
$sql & .

- fuser
echo " ~ N SO L
$res = mysqli_query($db, $sql);
return $res->num_rows;
f/ end badCheckLogin()

Products Page

&y Products X

&~ C [} localhost:8888/products.php o, m & =

Products

Please indicate which products to display:

Name: | union select id, username as name, password as description from users where 'l

Submit

SQL Injection - Dumps Users Table

&/ Products
— C' [localhost:8888/products.php m .& =
Products

SQL Statement: select * from product where name = " union select id, username as name, password as description from
users where '1'
Search Criteria: ' union select id, username as name, password as description from users where 'l

Product Name||Description function getProducts($name)

admin adminpass $db = | tDB();

user2 user2pass $sql = "se * i
1 F[- I = " S

user3 user3pass 11:}(_%"?.@ l I.sql» ' " fsqi
serg J1 3 X o | : ') '

e user4pass fres = mysqli_query($db, $sql);

USCI‘S USCI‘SpaSS re tu N 'II res;

Primary Defenses:

e Use of Prepared Statements (Parameterized Queries)
e Use of Stored Procedures

e Escaping all User Supplied Input

Additional Defenses:

e Least Privilege

e White List Input Validation

Note*: Mitigation techniques recommended by OWASP

Login with Sanitization &Binding

&y Good Login

&« & localhost:8888/goodLogin.php

Good Login Page

Username Submitted: anything
Password Submitted: ' or '1=1

Results: Invalid Username or Password Provided!

<? if($_POST){

A Sanitize Yariables
fusername = filter_input(INPUT_POST, ‘'username’,
'/ Passwords can have s : s in them

0 g,_POSI'[‘password’]D

$password
" Returns total # of matching users
$cnt = checkLogin($username, $password);

2%
R

function checkLogin($user, $pass){

$dbh = pdoConn B()
$pw_hash = rd($pass, $salt);
$sql = $dbh->prepare("select count(id

$sql->=bindParam(' :user
$sql-=bi as
$sql-rex
$res =
return $res[’

end checkLo

FILTER_SANITIZE_STRING);

e Comic - https://xkcd.com/327/

e OWASP SQL Injection Prevention Cheat Sheet - https://

www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

e OWASP Top 10 — https://www.owasp.org

e SQL Injection Definition -http://www.techopedia.com/
definition/4126/sql-injection

