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e An SQL injection is a computer attack in which malicious code is embedded
in a poorly-designed application and then passed to the backend database.

The malicious data then produces database query results or actions that
should never have been executed.
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e Injection flaws have consistently been in the OWASP top 10 list.
e 2004: A6 Injection Flaws
e 2007: A2 Injection Flaws
e 2010: Al Injection
e 2013: Al Injection




Demo Page

\_y Demo

= ' [ localhost:8888

Demo page for SQL injections

This site was created for demonstration purposes only and these techniques should never be used in a production environment.

The login page is available here




Vulnerable Login Page

&y Bad Login

~ C' [} localhost:8888/badLogin.php

Bad Login Page

Username: anything
Password: 'or'1=1

Submit




SQL Injection - Login

(s Bad Login
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Bad Login Page

SQL statement: select * from users where username = 'anything' and password =" or '1=1'

Username Submitted: anything PP —

Password Submitted: ' or '1=1 $username = § POST['
$password = $:POST['

Results: Valid User

’/ Returns True or False
$res = badCheckLogin($fusername, }{password):

Check out our Products page
You can leave comments on our Feedback page

function badCheckLogin($user, $pass){
$db = connectDB();
$sql & .

- fuser
echo " ~ N SO L
$res = mysqli_query($db, $sql);
return $res->num_rows;
f/ end badCheckLogin()




Products Page

&y Products X

&~ C [} localhost:8888/products.php o, m & =

Products

Please indicate which products to display:

Name: | union select id, username as name, password as description from users where 'l

Submit




SQL Injection - Dumps Users Table

&/ Products
— C' [ localhost:8888/products.php m .& =
Products

SQL Statement: select * from product where name = " union select id, username as name, password as description from
users where '1'
Search Criteria: ' union select id, username as name, password as description from users where 'l

Product Name||Description function getProducts($name)

admin adminpass $db = | tDB();

user2 user2pass $sql = "se * i
1 F[ - I = " S

user3 user3pass 11:}(_%"?.@ l I.sql» ' " fsqi
serg J1 3 X o | : ' ) '

e user4pass fres = mysqli_query($db, $sql);

USCI‘S USCI‘SpaSS re tu N 'II res;




Primary Defenses:

e Use of Prepared Statements (Parameterized Queries)
e Use of Stored Procedures

e Escaping all User Supplied Input

Additional Defenses:

e Least Privilege

e White List Input Validation

Note*: Mitigation techniques recommended by OWASP




Login with Sanitization &Binding

&y Good Login

&« & localhost:8888/goodLogin.php

Good Login Page

Username Submitted: anything
Password Submitted: ' or '1=1

Results: Invalid Username or Password Provided!

<? if($_POST){

A Sanitize Yariables
fusername = filter_input(INPUT_POST, ‘'username’,
'/ Passwords can have s : s in them

0 g,_POSI'[ ‘password’ ]D

$password
" Returns total # of matching users
$cnt = checkLogin($username, $password);

2%
R

function checkLogin($user, $pass){

$dbh = pdoConn B()
$pw_hash = rd($pass, $salt);
$sql = $dbh->prepare("select count(id

$sql->=bindParam(' :user
$sql-=bi as
$sql-rex
$res =
return $res[’

end checkLo

FILTER_SANITIZE_STRING);




e Comic - https://xkcd.com/327/

e OWASP SQL Injection Prevention Cheat Sheet - https://

www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

e OWASP Top 10 — https://www.owasp.org

e SQL Injection Definition -http://www.techopedia.com/
definition/4126/sql-injection




