Security Design Principles

Keith A. Watson, CISSP, CISA
GLSP February 2011 Meeting

Overview

Introduction to information security

Definitions and terms
Software security
The C-1-A and other concepts

Security and the SDLC
Software Security Principles

Objectives

Have a fundamental understanding of
information security as it applies to the
security of applications

L

T
H

d

earn how security can be integrated into
ne software development life cycle
ave a understanding of security principles

P

oplied in the design and implementation
rocess

Introduction to Software Security

What is Information Security?
How does it apply to Software Security?

Trends that affect the security of software
Attacker’s Advantage

Defender’s Dilemma
Security versus Reliability
Secure Development in the SDLC

What is Information Security?

The process of protecting information in all of
its forms

Virtual (customer data, internal information,
proprietary designs, source code, etc)

Physical (written, verbal, prototypes, printouts,
disks, devices, backup tapes, etc)

Computer security is a subset of information
security

U.S. Definition of Information

Security

"...protecting information and information
systems from unauthorized access, use,
disclosure, disruption, modification, or

destruction in order to provide...integrity...
confidentiality...availability.”

Title 44, Chapter 35, Subchapter lll, § 3542 (b)(2)
U.S. Code

Information Security

Courtesy of John Manuel

What is Software Security?

Also called "Application Security”

Shortened to “app security” or “appsec”
Area of information security focused on

software systems, applications, software
components

Why

Is Software Vulnerable?

Andy Ozment, Cambridge software security
researcher, suggested:

| adC
| dC

| dC

< of Developer Motivation
< of Developer Knowledge

k< of Tools

The PITAC reports the software development
is not yet a science or a rigorous discipline

The process is not controlled to prevent
vulnerabilities

DoD’s Definition of

Software Assurance

"...the level of confidence that software
functions as intended and is free of
vulnerabilities, either intentionally or
unintentionally designed or inserted
as part of the software.”

Komaroff and Baldwin, DoD Software Assurance Initiative, September 2005,

The CIA

Information Security

Confidentiality

Integrity

Availability

Confidentiality

Keeping information secret

Prevention of intentional or unintentional
disclosure of sensitive information to
unauthorized individuals

Disclosure can occur through cryptanalysis,
inference, traffic analysis, covert channels,
bugs, insiders, attackers, etc.

Integrity

Ensuring that information has not been
modified or deleted
Prevent:
Modifications by unauthorized individuals or
Processes

Unauthorized modifications by authorized
individuals or processes

Data must maintain consistency

Avalilability

Avoid "Why can’t | read my email?!”

Ensuring the timely and reliable access to
information and information systems by the
appropriate personnel

Maintaining the proper working order of
systems to reduce likelihood of downtime
Preventing the misuse of resources that could
lead to a denial of service

The CIA of Information Security

Confidentiality, Integrity, and Availability are
often referred to as the C-I-A triad of
information systems security

Guiding principles

The opposite of C-I-A is D-A-D:
Disclosure, Alteration, and Destruction

Other Key Concepts

Information Security

Authentication Auditing

Authorization | Accountability

Non-repudiation

Authentication

Act of verifying someone’s identity
Something you know

A secret: password, passphrase, single-use PW
Something you have

A token: smart card, OTP card, RFID card
Something you are

A biometric: fingerprint, iris pattern, vein pattern
Two-factor authentication is more effective

Authorization

Act of checking that a user is allowed to do
something
Verification of user’s authority
Access Control Lists are a general mechanism
Access Control Models:

Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

Role-based Access Control (RBAC)

Authorization

Bell-LaPadula Model

Access control model used by governments

Users and Resources are classified by sensitivity
Top Secret, Secret, Unclassified, for example

Users cannot read to a higher level (no read up)

Users cannot write to a lower level (no write
down)

Auditing

Periodic review of the security of a system
Ongoing monitoring of activities on a system
Auditors can review the security controls

Determine threats, vulnerabilities, lapses

Assign a risk value and provide recommendations
Audit trails can provide detailed information
about user activities and transactions

Accountability

Act of determining what happened

Recalling the actions an attacker or user took
during a transaction

Techniques used to ensure accountability:

Audit trails and logs correlation and analysis
Digital Forensics

Detailed postmortem analysis

Non-repudiation

Act of ensuring undeniability of a transaction
Using a variety of evidence to prove that the
actions took place by a specific individual
Cryptographic protocols exists to provide
non-repudiation

Trusted third parties

Digital Signatures
Non-repudiation is difficult and expensive

Trends Affecting Software Security

Moving from centralized to decentralized
Mainframes to workstations

Central administration to user administration
Moving from fixed to portable to “take it
everywhere” devices

Desktops to laptops

Laptops to mobile devices

Trends Affecting Software Security

Moving from custom software to commodity
software
Mainframe applications to desktop applications
Desktop applications to web applications
"Standard” software to open standards

Moving from open source to close source
back to open source

Open source versus Closed source vulnerabilities

Attacker’s Advantage

Defender’s Dilemma

Lack of central control over software
Software built for a variety of environments
Programmers embed secrets in code
Programmers invent crypto algorithms
Poor or lack of formal testing processes
Poor design and architecture processes
Constant break/fix cycle

Security versus Reliability

Security is a part of reliability
Security addresses correctness

A security failure can lead to reliability problems
Reliability is a part of security

Reliability addresses availability
A reliability problem can impact operations

Security versus Reliability

Reliability Security

N N

OR Reliability

Quality and Security

Increasing the investment in software quality
leads to fewer security problems

Most effective quality measure is a code walk-
through or code review

Programmers are more careful when their code
will be scrutinized by others

Testing and review processes are improved
Impacts to quality/security addressed early

Quality and Security

Security Flaws Quality

A

Increasing
Quality

Quality Security Flaws

Secure Development in the SDLC

The software development life cycle is an
appropriate place to define security efforts

"best practices” and checklists lead to small
Improvements in app security

Security is better addressed early

10x money, time, effort to correct at each higher
stage

SDLC Bug Fix Costs

SDLC Process

10x

>Implementation

SDLC Phases

(as defined by NIST)

nase 1:
nase 2:
nase 3:

vy U U U U

nitiation
Development (or Acquisition)

mplementation (or Assessment)

nase 4: Operations and Maintenance
nase 5: Disposition

Note: Your organization’s process may vary.
For example, DoJ's SDLC has ten steps.

SDLC Phases

Phase 1: Initiation

Identify or specify applicable policies or laws
Classify information involved

Public, Internal Use, Sensitive
Develop confidentiality, integrity, availability
objectives
Gather and address security requirements
Preliminary risk assessment

Phase 2: Development

Risk assessment

Select initial baseline of security controls
Refinement of security controls

Security control design

Security operation planning

Security test planning

Phase 3: Implementation

Component inspection and acceptance
Security control integration

User and administrator training
Security test and acceptance
Statement of residual risk

Phase 4: Operations and

Maintenance

Change management control and auditing
Security monitoring

Incident response and handling

Auditing

Intrusion detection

Contingency plans and testing

Periodic assessments and penetration tests

Phase 5: Disposition

Transitioning of sensitive data
Component disposal

Media sanitization
Information archiving

Security Features

Security Features are not the same thing as
Secure Features

Security Features are often “bolted on”
instead of “built in”

Afterthoughts in the design process

User demanded after security lapses

Premium features that cost extra
Having security features means that was not
a priority in your design, implementation

Security Bolted-On or Built-In

Input | Bolt-on Built-in | !nput

Request

Output Output

Software Security Principles

There are several sources of sound principles for
software security:

Software Security Principles, Building Secure
Software (JohnViega and Gary McGraw)

Secure Design Principles, Foundations of Security:
What Every Programmer Needs to Know (Neil
Daswani, Christoph Kern, Anita Kesavan)

Saltzer Schroeder Principles, "The Protection of
Information in Computer Systems,” 1974
The following principles provide coverage for

90% of potential problems

Software Security Principles

from Building Secure Software

Secure the Weakest
_ink

Practice Defense in
Depth

-ail Securely

Use Least Privilege

Compartmentalize

Keep It Simple
Promote Privacy
Hiding Secrets is

Hard

Be Reluctant to Trust
Use Community
Resources

Principle #1.:

Secure the Weakest Link

Attackers target the weakest component
These are most likely to be broken

High reward for lowest amount of effort
Attackers will avoid or bypass system security

Why attack a firewall when you attack the web
server behind the firewall?

Why attack the authentication system when you
can pose as a legitimate user and call support?

Principle #2:

Practice Defense in Depth

Defense in Depth involves diversification
Multiple layers, different types
Increases likelihood of detection and response
Decreases likelihood of complete access
Compare banks to convenience stores
Banks: guards, cameras, vaults, silent alarms
Stores: cameras, little cash
Think about rewards. Think about risk to robbers.

Principle #3:

Fail Securely

Complexity is the enemy of security

Involves designing a system to withstand the
failure of components while ensuring security
A web server access control module cannot
read the ACL file. What should happen?

A payroll service system cannot connect to
the employee database. What should
happen?

The payroll system is given a corrupted file.
What should happen?

Principle #4:

Use Least Privilege

A user or program is given the minimum
amount of privilege needed to accomplish a
specific task

Attackers may take advantage of additional
privileges to access sensitive information
UNIX web servers need system privileges to
acquire port 8o/tcp, then drop to user privs
Other applications use mediated privileges

Principle #x5:

Compartmentalize

Break up the system into units and isolate
security privileges
Minimize damage if attacked

Avoids “all-or-nothing” architecture approach
Postfix (sendmail alternative) uses multiple
processes running in "compartments”

Each process runs with different privileges
Each process is contained in a directory (chroot())

Principle #6:

Keep 1t Simple

Design and implementation should be simple
Complex designs are hard to understand and
implement correctly

Complex implementations are hard to
understand and debug quickly

Security operations should pass through a
small number of “choke points”

There must be no way around these

Principle #7:

Promote Privacy

Avoid compromising the privacy of the user
Be diligent in protecting personal information

In some industries, reqgulations define privacy
requirements (HIPAA, GLBA, COPPA, etc)

Some trade offs made with usability

Storing personal information for easy recall
Systems and applications should reveal less

Removing or altering version information

Principle #8:

Hiding Secrets Is Hard

Secrets are difficult to keep sometimes
Complex binaries do not hide secrets well
Attackers are surprisingly good at reverse
engineering
Copy protection schemes fall victim to R.E.
DVD DeCSS is perhaps the best example R.E.
Insiders are another significant issue

SIPRnet has 5ook users; Wikileaks source

Principle #9:

Be Reluctant to Trust

Trust is often extended too frequently
Clients and servers can be compromised

Trust relationships can be exploited
Compromised web servers can still provide
secure connections to clients

Serve malware files and false data
rsh, rlogin use simple host/port access control

Source host and port can be spoofed

Principle #10: Use

Community Resources

The security and programming communities
are open and sharing

The crypto community is open because
algorithms must be reviewed and proven
correct

Use libraries and code that has been well-
tested and “abused” by the community

Beware that more eyes do not always find
bugs

Software Design Principles

from Foundations of Security

Foundations of Security Secure By Default
contains most of the Usability
previous principles Security Features Do

Not Imply Security

Software Design Principles

Secure By Default
Design security in instead of adding secure
options
Make secure options the default configuration
Usability
Complex systems do not encourage proper use
Users don't read documentation

Stringent security configurations will force users
to bypass security or find less than secure
methods

Software Design Principles

Security Features Do Not Imply Security

Security Application Developers are regular
programmers and they make mistakes too

A significant number of security products have
had major security issues over the years

Enabling some security features does ensure that
a system is secure

Saltzer Schroeder Principles

Saltzer and Schroeder Complete Mediation
published a paper at Open Design
the Fourth ACM Psychological
Symposium on Acceptability

Operating Systems in
1974 that highlighted
11 security design
principles

Saltzer Schroeder Principles

Complete Mediation
Every access should be checked for authority
Access control is system-wide and consistent
Changes in authority should be promulgated
Open Design
The security of the system should not be a secret

The security should lie in the protection of
password and keys, not the internal operations

Open design encourage review and critique

Saltzer Schroeder Principles

Psychological Acceptability

Design the user interface so that users operate
with the appropriate protection consistently

Use the user’s mental model of security as a guide
so that mistakes are minimized

Review

Introduced information security concepts and
core principles
C-1-A and AAAA and Non-repudiation
Software security
Quality and Reliability
How security fits into the SDLC
Software Security Principles

