Truth and Consequences December 6, 2015

Eugene H. Spafford

Working with Jeff Avery Chris Gutierrez Prof. Mohammed Almeshekah Prof. Saurabh Bagchi

The "Liars Club"

Think about this "truism" of cyber security:

There is no security through obscurity.

Makes sense, right?

No, it doesn't! Try publishing your password. Expose your encryption keys. Make your firewall config world readable.

In actual practice, obscurity **adds** to security!

No, it doesn't! Try publishing your password. Expose your encryption keys. Make your firewall config world readable.

In actual practice, obscurity **adds** to security!

No, it doesn't! Try publishing your password. Expose your encryption keys. Make your firewall config world readable.

In actual practice, obscurity **adds** to security!

This "truism" is a corruption of Kerckhoff's Principle:

A **cryptosystem** should be secure even if everything about the system, except the key, is public knowledge.

All war is based on deception.

(Sun Tzu)

Deception in conflict is an old, tried-and-true concept!

All war is based on deception.

(Sun Tzu)

Deception in conflict is an old, tried-and-true concept!

The same is true in Cyber Security.

We have developed a classification scheme for describing how deception has been employed in cyber...and suggests where it might be added.

Denial/Isolation —>
 Prevent and Hide

- Denial/Isolation —>
 Prevent and Hide
- Degradation/Obfuscation —> Slow, Reduce Recovery, Obfuscate and Create Noise

Denial/Isolation —>
 Prevent and Hide

•

- Degradation/Obfuscation —> Slow, Reduce Recovery, Obfuscate and Create Noise
 - **Deception/Negative Info.** —> Lead Astray, Decoy and Add Risk

- Denial/Isolation —>
 Prevent and Hide
- Degradation/Obfuscation —> Slow, Reduce Recovery, Obfuscate and Create Noise
- Deception/Negative Info. —> Lead Astray, Decoy and Add Risk
 - **Attribution/Counter-Op.** —> Attribute and Cause Damage

•

Deception to Improve Security

- Used as ad-hoc attempt:
 - Deception has been mainly used as "trapping" or "deterrence" tools.
- Traditional security (-) and deception (+) work in tandem.
- Three special advantages:
 - 1. Increase entropy when there is leakage.
 - 2. Gain information about adversaries.
 - 3. Gives defenders an edge in OODA.

Deception Model

Deception Model

Some of Our Current Projects

Ersatz Passwords — Ending Password Cracking

- Passwords files are stolen and leaked all the time
- Can we make a password file return fake passwords when cracked and detect that upon login?

CNET > Security > Netflix passwords leaked again?

Netflix passwords leaked again?

What do "w4gw4g," "Poosty72," and "moshimoshi" have in common? They're just three of around 500 Netflix passwords and usernames leaked online, but you may not have to worry.

by Seth Rosenblatt 🕊 @sethr / June 12, 2014 3:51 PM PDT

Nearly 7 Million Dropbox Passwords Have Been Hacked

Google Says Not To Worry About 5 Million 'Gmail Passwords' Leaked

LinkedIn to pay premium users a measly \$1 for leaking their passwords

Ersatz Passwords — Ending Password Cracking

- Passwords files are stolen and leaked all the time
- Can we make a password file return fake passwords when cracked and detect that upon login?

CNET > Security > Netflix passwords leaked again?

Netflix passwords leaked again?

What do "w4gw4g," "Poosty72," and "moshimoshi" have in common? They're just three of around 500 Netflix passwords and usernames leaked online, but you may not have to worry.

by Seth Rosenblatt 🕊 @sethr / June 12, 2014 3:51 PM PDT

Nearly 7 Million Dropbox Passwords Have Been Hacked

Google Says Not To Worry About 5 Million 'Gmail Passwords' Leaked

LinkedIn to pay premium users a measly \$1 for leaking their passwords

Yes we can!

root:\$1\$hnH/w50a\$tPdv5HZRsDP46FtsW8eXH/:0:0::0::/root:/bin/csh spaf:\$1\$7hstg1PAq\$wTnskj1HwLgdD90SerkQp:0:0::0::/homes/spaf:/bin/sh

root w)oi2djl;Ksju spaf \$tR0ngP@s@w0rD

Ersatz Passwords

. . .

. . .

Current method

root:\$1\$hnH/w50a\$tPdv5HZRsDP46FtsW8eXH/:0:0::0::/root:/bin/csh spaf:\$1\$7hstg1PAq\$wTnskj1HwLgdD90SerkQp:0:0::0::/homes/spaf:/bin/sh

root:\$1\$<mark>Afeo2MkL\$tWoL9yeQabg2luyJhRWlp</mark>:0:0::0:0::/root:/bin/csh spaf:\$1\$<mark>9LksuHq9\$oKjhyD65SajuWGy68udGfo</mark>:0:0::0::0::/homes/spaf:/bin/sh ...

Ersatz Passwords

. . .

A practical Example

root:\$1\$<mark>Afeo2MkL\$tWoL9yeQabg2luyJhRWlp</mark>:0:0::0::/root:/bin/csh spaf:\$1\$<mark>9LksuHq9\$oKjhyD65SajuWGy68udGfo</mark>:0:0::0::/homes/spaf:/bin/sh

root adsk(soa97Sd; spaf W3@kPaWn:-)

Ersatz Passwords

. . .

. . .

With our method

In Slightly More Detail

1. Encrypt the real password with an HDF B=HDF(pass)

2. Generate a fake password, p*

3.Generate new salt = $\beta \oplus p^*$ (so, $\beta \oplus$ salt == p^*)

4. Store $\partial = H(p^* || \text{ salt})$, salt in password file

5. Enter p'

- (a) If $H(p' || salt) == \partial$ **Alarm!**
- (b) If $HDF(p') \oplus salt == p^* OK!$
- (c) Otherwise, "Bad ID or Password"

Patches

- Patches are made to software
 - Security
 - Performance
 - Bug fixes
- Remove the issue/bug
- Can we use patches to our advantage?

Patches

- Patches are made to software
 - Security
 - Performance
 - Bug fixes
- Remove the issue/bug
- Can we use patches to our advantage?

Yes we can!

Deceptive Patches

- Introduce patches that respond deceptively
 - Fix the issue at hand as well as add an extra layer of security
 - Predict the adversary's actions and respond accordingly

Deceptive Patches

- Benefits
 - Protect confidential data indirectly
 - Predict and monitor adversary's movements
 - Prosecute attackers
 - Works against insiders, too
- Cons
 - Difficult to attain consistency

Deceptive patch example

. . .

```
n = dn_expand(msg, eom, cp+18, (char *)cp1, (sizeof data) - 18);
```

/* n is the length of the compressed domain name as seen in msg*/

printf("dn_expand returned: %d, expanded name = %s\n", n, (char *)cp1);

```
if (n < 0) {
    printf("ERROR: n = %d < 0!\n", n);
    printf("EXITING RREXTRACT!\n");
    hp->rcode = FORMERR;
    return (-1);
}
Assignment of some calculated value to n
...
n = dlen - (NS_SIG_SIGNER + n);
...
memcpy(cp1, cp, n);
Use the value of n without checking
    it in memcpy
```

http://samate.nist.gov/SARD/view_testcase.php?tID=1291

Normal Patch

 $n = dlen - (NS_SIG_SIGNER + n);$

```
if (n < 0){
    printf("ERROR: n = %d < 0!\n", n);
    printf("EXITING RREXTRACT!\n");
    hp->rcode = FORMERR;
    return (-1);
}
```

memcpy(cp1, cp, n);

Deceptive Patch

$n = dlen - (NS_SIG_SIGNER + n);$

. . .

if (n < 0){ // Respond deceptively by allowing the memcpy to occur in a sandbox or present seg fault data dump that is deceptive // Exit current execution path }</pre>

memcpy(cp1, cp, n);

Deception in Anti-Forensics

- Attackers rely on anti-forensics tools to remain hidden within a system
 - Example: Data purging
 - Example: Ephemeral tool placement

Can we use deception to aid in forensics?

Deception in Anti-Forensics

- Attackers rely on anti-forensics tools to remain hidden within a system
 - Example: Data purging
 - Example: Ephemeral tool placement

Can we use deception to aid in forensics?

Yes we can!

Deceptive Memory System - Challenges

- Identify behaviors of interest
- Maintain a minimum impact on performance
- Isolate the version control tracking from the attacker

Modeling Deception in Information Security

- Analysis of conflicts where players have misconceptions of systems, assets, and intention of other players
- Analyze deception strategies to determine optimal defense
- Historically applied to military conflicts such as the Cuban Missile Crisis, Normandy Invasion, etc.

 $(\mathbf{x}, \boldsymbol{\theta}) d\mathbf{x} = \mathbf{M} | T$ $\left(\frac{\partial}{\partial \theta}\ln L(\mathbf{x},\theta)\right) \cdot f(\mathbf{x},\theta) d\mathbf{x} = \int T(\mathbf{x}) d\mathbf{x}$ $\frac{\partial}{\partial t} M T(\xi) = \frac{\partial}{\partial \theta} \int T(x) f(x, \theta) dx = \int \frac{\partial}{\partial \theta} T(x) dx$

Hypergames

A game theoretic model where players may not understand the conflict

Hypergames Goals

- Design a flexible tool applicable to information security
- Analyze deceptive components in a defensive system
- Provide insight on level of effort needed to successfully deploy deception

There is potential for greater "security through obscurity."

Questions? Comments? <u>https://ceri.as/deception</u>

There is potential for greater "security through obscurity."

Trust us on that.

Questions? Comments? <u>https://ceri.as/deception</u>