Random Packet Size Morphing and Direct Target Sampling for VoIP Language Obfuscation

Veronica Manfredia, Filipo Sharevskib, Melissa Dark, PhDc

1. Packet Size Attacks on Encrypted VoIP

Background: QoS and VBR
- QoS: minimal delay, negligible jitter, no packet loss
- Practical implementation: VBR \(\rightarrow\) CELP \(\rightarrow\) Speex1
- VBR codecs encode easier sounds at lower bit rates \(\rightarrow\) better QoS

Security measures
- Encrypted payload (SRTP and SRTCP)
- Length-preserving stream cipher

Packet size attacks may reveal:
- Spoken language
- Key phrases
- A transcript of the conversation

Security flaws
- Packet sizes correspond to spoken sounds
- Individual or sequential (n-gram) packet sizes leak information

2. Language Identification Countermeasures

Direct Target Sampling (DTS)2
- Pads and splits packets to match the distribution of n-grams in a target language
- Reduces the language identification classifier's accuracy
- Adds a significant amount of padding, increasing overhead

Source language packet \hspace{1cm} Target language CDF (English)

<table>
<thead>
<tr>
<th>Packet Size</th>
<th>PRNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.103</td>
<td>0.777</td>
</tr>
<tr>
<td>0.899</td>
<td>1.000</td>
</tr>
<tr>
<td>0.699</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Traffic Morphing (TM)3
- Uses convex optimization techniques to solve the equation \(Y = AX\)
 - \(Y\) is the target language n-gram distribution vector
 - \(X\) is the source language n-gram distribution vector
 - \(A\) is a morphing matrix obtained by solving an optimization problem that minimizes the difference between source and target packet size

3. Random DTS and TM

DTS and TM countermeasures fail to reduce classifier accuracy when the classifier is:
- able to train on examples of morphed traffic, and
- at least an order higher than the applied countermeasure3

Random DTS and TM generate a random target distribution for each VoIP conversation to remove the ability to train on morphed traffic and reduce the classifier's accuracy.

4. Experimental Design

- English, Hungarian, Mandarin, Portuguese, Russian, Tamil languages \(\rightarrow\) 9 packet sizes produced by Speex codec
- Binary \(X^2\) trigram morphing and DTS trained classifier: 8 characteristic trigrams, 93 speakers per language
- Random DTS and TM on unigrams
- CVXOPT solver interface for the following optimization problem3:

\[
\begin{align*}
\text{Minimize:} & \quad \sum_{i = 1}^{n} a_i x_i \quad (l_i - s_i) \\
\text{Subject to:} & \quad \sum_{i = 1}^{n} a_i x_i = s_j \quad \forall j \in [1,n], \\
& \quad \sum_{i = 1}^{n} a_i = 1 \quad \forall j \in [1,n], \\
& \quad a_i > 0 \quad \forall i \in [1,n] \\
& \quad x_j : \text{source packet} \\
& \quad y_i : \text{target packet} \\
& \quad s_i : \text{source packet size} \\
& \quad s_j : \text{target packet size} \\
& \quad a_{i,j} : \text{probability of morphing } s_j \text{ to } s_i
\end{align*}
\]

5. Results

Average Padding overhead
- Random DTS: 31.4%
- Random Morphing: 26.2%

Average classifier accuracy
- Original sizes: 69.8%
- Random Morphing: 51.2%
- Random DTS: 50.6%

Average classifier accuracy reduction
- Random Morphing: 25.1%
- Random DTS: 26.5%

6. Conclusion

Random DTS and TM reduced language-related information leakage, but add padding overhead. More work is needed to examine their effectiveness against phrase detection, transcript reconstruction, timing attacks, and other classifiers, as well as their impact on QoS.

This material is based upon work supported by the National Science Foundation under grant #1062970. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.