

CERIAS Tech Report 2000-25

Using embedded sensors for
detecting network attacks

Florian Kerschbaum, Eugene H. Spafford, Diego Zamboni

Center for Education and Research in
Information Assurance and Security

Purdue University, West Lafayette, IN 47907

Using embedded sensors for detecting network attacks�

Florian Kerschbaum Eugene H. Spafford Diego Zamboni

Center for Education and Research in Information Assurance and Security
1315 Recitation Building

Purdue University
West Lafayette, IN 47907-1315

fkerschf,spaf,zambonig@cerias.purdue.edu

September 25, 2000

Abstract

Embedded sensors for intrusion detection consist
of code added to the operating system and the
programs of the hosts where monitoring will take
place. The sensors check for specific conditions
that indicate an attack is taking place, or an intru-
sion has occurred. Embedded sensors have advan-
tages over other data collection techniques (usu-
ally implemented as separate processes) in terms
of reduced host impact, resistance to attack, ef-
ficiency and effectiveness of detection. We de-
scribe the use of embedded sensors in general,
and their application to the detection of specific
network-based attacks. The sensors were imple-
mented in the OpenBSD operating system, and our
tests show a 100% success rate in the detection of
the attacks for which sensors were instrumented.
We discuss the sensors implemented and the re-
sults obtained, as well as current and future work
in the area.

�Portions of this work were supported by sponsors of CE-
RIAS. This paper was published in Proceedings of the First
ACM Workshop on Intrusion Detection Systems, November
2000, Athens, Greece.

1 Introduction

The field of intrusion detection has received in-
creasing attention in recent years. One reason for
this is the explosive growth of the Internet and the
large number of networked systems that exist in all
types of organizations. The increase in the num-
ber of networked machines has lead to an increase
in unauthorized activity [6], not only from exter-
nal attackers, but also from internal attackers, such
as disgruntled employees and people abusing their
privileges for personal gain [27].

To detect and counteract unauthorized activity,
it is desirable for network and system administra-
tors to monitor activity in their networks. Because
even a single host can generate several megabytes
of logging and audit data in a single day, it is desir-
able to have tools that can automatically monitor
computer systems and detect when unauthorized
activity is taking place. These tools are commonly
known as intrusion detection systems.

In the last few years a number of intrusion de-
tection systems have been developed, both in the
commercial and academic sectors. These systems
have used different approaches to detecting unau-
thorized activity, and have given us some insight
into the problems that still have to be solved be-
fore we can have intrusion detection systems that

1

are useful and reliable in production settings for
detecting a wide range of intrusions.

Most of the existing intrusion detection
systems have used central data analysis en-
gines [e.g. 10, 17] or per-host data collection
and analysis components [e.g. 15, 26]. Even
systems designed using software agents [e.g. 2, 3]
have in practice implemented agents as separate
processes. All of these approaches are subject to
the following problems:

� They continuously use additional resources in
the system they are monitoring, even when
there are no intrusions occurring.

� Because the components of the intrusion de-
tection system are implemented as separate
processes, they are subject to tampering. An
intruder can potentially disable or modify the
programs running on a system, rendering the
intrusion detection system useless or unreli-
able.

In this document we show the use of embedded
sensors to detect a specific set of network-based
attacks. These sensors are built into the code of
the operating system. This makes them use ad-
ditional resources only when they are executed or
triggered, and be more resistant to tampering.

1.1 Intrusion Detection

Intrusion detection is defined as “the problem of
identifying individuals who are using a computer
system without authorization (i.e., ‘crackers’) and
those who have legitimate access to the system
but are abusing their privileges (i.e., the ‘insider
threat’)” [21]. We add to this definition the iden-
tification of attempts to use a computer system
without authorization or to abuse existing privi-
leges. Our working definition matches the one
given by Heady et al. [14], where an intrusion is
defined as “any set of actions that attempt to com-
promise the integrity, confidentiality, or availabil-
ity of a resource,” disregarding the success or fail-
ure of those actions.

The definition of the word intrusion in a com-
mon dictionary [19] does not include the concept
of an insider abusing his or her privileges to per-
form unauthorized actions, or attempting to do so.
A more accurate phrase to use is intrusion and in-
sider abuse detection. In this document we use the
term intrusion to mean both intrusion and insider
abuse.

An intrusion detection system is a computer sys-
tem (possibly a combination of software and hard-
ware) that attempts to perform intrusion detection,
as defined above. Most intrusion detection sys-
tems try to perform their task in real time [21], but
there are also intrusion detection systems that do
not operate in real time, either due to the nature of
the analysis they perform [e.g. 16] or because they
are geared for forensic analysis [11, 36].

Intrusion detection systems are usually classi-
fied as host-based or network-based [21]. Host-
based systems base their decisions on information
obtained from a single host (usually audit trails),
while network-based systems obtain data by mon-
itoring the traffic in the network to which the hosts
are connected.

The definition of an intrusion detection system
does not include preventing the intrusion from oc-
curring, only detecting it and reporting it to an op-
erator. There are some intrusion detection systems
(for example, NetRanger [8]) that try to react when
they detect an unauthorized action. This reaction
usually includes trying to contain or stop the dam-
age, for example, by terminating a network con-
nection.

1.2 Detecting network attacks

In the last few years, the number of remote attacks
using the TCP/IP protocol suite [9] has grown in
number. This has been caused in large part by
the known design flaws in the TCP/IP protocol
suite [4], and by the explosive growth of systems
using TCP/IP that are connected to the Internet. A
large number of network attacks have been made
public, including source code for exploiting them.

2

Some of these attacks exploit faults in the network-
ing code of operating systems, while others exploit
basic vulnerabilities of the TCP/IP protocol suite.

Many network attacks are denial-of-service at-
tacks, which cause disruption of the services pro-
vided by the attacked host. Others allow the at-
tacker to gain unauthorized access to resources of
services offered by the attacked host, and others al-
low the attacker to gain information about the host
that can be used to mount further attacks.

This document focuses on an effort to provide
real-time detection of a set of common network
attacks. Other intrusion detection systems have
implemented detection of these attacks, but most
of them have implemented the detectors as inde-
pendent processes that gather and interpret pack-
ets flowing on the network. This approach im-
poses an extra load on the system where the in-
trusion detection system is running (because it has
to process all the packets that pass through the
network), introduces an extra delay in the detec-
tion of the attacks (because the packet data has to
be passed from the networking layers of the oper-
ating system to a user-level process for interpre-
tation) and is subject to attacks as described by
Ptacek and Newsham [28].

We describe a different approach to the imple-
mentation of the detectors: inserting them in the
networking code of the attacked host. Small detec-
tors, called embedded sensors, for specific attack
signatures are placed within the Unix kernel code
that processes network packets. This takes advan-
tage of the processing that the kernel already does,
therefore reducing system load. Also, because the
sensors are placed in the code segment determined
to be responsible for the flaw, they can reliably in-
dicate an attack, reducing the number of both false
positives and false negatives. Finally, because the
sensors become part of the kernel code, they are
very difficult to disable or tamper with.

2 Embedded sensors for intru-
sion detection

We define an embedded sensor as a piece of soft-
ware (conceivably aided by some hardware com-
ponents) that monitors a specific variable, activity
or condition of a host. Because the sensor mon-
itors the system directly and not through an audit
trail or through packets on a network, we say that it
performs direct monitoring, and because the sen-
sor is part of the program or system it monitors,
we say that it is an internal sensor [33].

Embedded sensors are built by modifying the
source code of the program that will be monitored.
Sensors should be added to the code at the point
where a security problem can be detected in the
most efficient way by using the data available at
that moment. If implemented correctly, the sen-
sor will be able to determine whether an attack is
taking place by performing very simple checks.

2.1 How sensors work

Figure 1 shows an example of a very simple sen-
sor. The code on the left is potentially vulnerable
to a buffer-overflow attack [1] because the value of
the HOME environment variable is being copied
to a buffer without checking its length. On the
right, lines 2–6 have been added, and constitute
a sensor. This sensor computes the length of the
HOME environment variable, and if it is longer
than the buffer into which it will be copied it gen-
erates an alert. This example assumes that the
function log alert has been defined elsewhere.
Of course, the string “buffer overflow” is provided
only as an example—in a real sensor, a more de-
scriptive message would be provided.

The example in Figure 1, as per our definition of
sensor, does not try to prevent the overflow from
happening, it only tries to note its occurrence. Po-
tentially, sensors could try to stop the intrusions
they detect. For example, our sample sensor could
cut the HOME environment variable to 255 char-
acters to ensure that it will fit in the allocated

3

1 char buf[256];
2 strcpy(buf, getenv("HOME"));

1 char buf[256];
2 {
3 if (strlen(getenv("HOME"))>255) {
4 log_alert("buffer overflow");
5 }
6 }
7 strcpy(buf, getenv("HOME"));

Code before inserting sensor Code after inserting sensor

Figure 1: Example of vulnerable code before and after inserting an embedded sensor.

buffer. However, the effects of sensors modifying
data or altering the program flow are much harder
to analyze. For this reason, our current work has
focused on using embedded sensors only for de-
tection.

This example gives an idea of how embedded
sensors work in general: they look at the informa-
tion available in the program to determine if an in-
trusion has occurred, or if an attack is taking place.
If such a condition is found, an alert is generated.

2.2 What is good about embedded
sensors

Using embedded sensors for data collection in an
intrusion detection system has the following ad-
vantages over using external sensors (implemented
as separate programs):

� They can obtain data at its source, or at the
place where it is more convenient to obtain.
Data does not have to traverse through an ex-
ternal program interface for the sensor to get
it, because the sensor can read it directly off
the program’s data structures. This reduces
the delay between the generation of the data
and when the intrusion detection system can
make use of it.

� Data is never stored on an external medium
before the sensor obtains them, therefore the
possibility of an intruder modifying the data
to hide its tracks (for example, an intruder
modifying a log file) is practically eliminated.

� Embedded sensors are part of the program

they monitor, therefore they cannot be dis-
abled (as it is possible with an external sensor,
which can be killed or disabled) and they are
very difficult to modify to produce incorrect
results.

� Embedded sensors can analyze the data (at
least partially) at the moment they are ac-
quired, therefore reducing impact on the host
due to data traversing between different com-
ponents (and possibly between different con-
texts in the operating system, such as user and
kernel contexts in a Unix system).

� Embedded sensors can look for very spe-
cific conditions that signal attacks, instead
of reporting generic data for analysis. This
means that the amount of data that needs to be
reported, collected and analyzed by higher-
level analysis engines is much smaller, reduc-
ing both network traffic and processing load.

� Embedded sensors are only executed when
the task they perform is required (this is,
when the section of code they are a part of
is executed) and they are not executed as sep-
arate processes or threads, but as part of the
monitored program. For this reason, they do
not cause a continuous CPU usage overhead
on the host. This makes it possible to incor-
porate a much larger number of sensors on
a single host than it would be possible on a
system where all the sensors are implemented
externally [34].

� Embedded sensors can look for attempts
to exploit a vulnerability, independently of

4

whether the vulnerability actually exists in
the host where the sensor is running. For this
reason, embedded sensors can detect attempts
at intrusions that have already been fixed, or
even that are specific to a different platform
or operating system (for example, a sensor in
a Unix system could detect attacks specific to
Windows NT).

2.3 What is bad about embedded sen-
sors

Embedded sensors have the following disadvan-
tages with respect to external sensors:

� Their implementation requires having access
to the source code of the operating system and
its programs.

� They are more difficult to implement, because
they require modifications to the source code
of the operating system or its programs.

� They have to be implemented in the same lan-
guage as the program in which they are being
incorporated.

� They have the potential of causing much
more damage to the system if they contain er-
rors. A piece of code embedded in the kernel
of a Unix system can bring the whole system
down if it acts incorrectly.

� Improperly implemented sensors (for exam-
ple, one that repeatedly executes a costly op-
eration) can have detrimental effects on the
performance of the system. Because they can
exist at very low levels of the operating sys-
tems, sensors also have the possibility of dis-
rupting operations that depend on precise tim-
ing.

� They are difficult to port to different operating
systems.

3 Embedded sensors for de-
tecting network attacks

We have implemented a number of embedded sen-
sors for detecting common network attacks. In this
section we describe this implementation and the
results obtained.

3.1 Implementation platform

The sensors have been implemented in the
OpenBSD 2.6 operating system [18, 24], one of
the three main variations of the free operating sys-
tems based on the BSD distribution. This operat-
ing system was chosen for the following reasons:

� The source code is available, which makes
it easy to instrument the sensors both in the
kernel and in the system programs. Exten-
sive documentation is available [18, 35] about
the internals of the kernel and its networking
code.

� The source tree is centrally managed and dis-
tributed as a single directory tree. This makes
it more manageable than Linux, for example,
where source code for different components
of the operating system are distributed as sep-
arate packages. The source tree of OpenBSD
closely mimics the layout of the system itself,
making it easy to locate the code for different
programs and subsystems.

� The OpenBSD project is known for its atten-
tion to security, and is the first widely used
operating system that has gone through an
extensive line-by-line security audit process.
Most of the security problems for which sen-
sors will be implemented have already been
fixed in OpenBSD. By looking at the secu-
rity patches and at the change log for each
file it is easier to locate the portions of code
where the problems existed. This helps in de-
termining where the sensors for each intru-
sion have to be placed. In fact, in many cases

5

the code that fixed the problem could be eas-
ily identified, and the only thing that needed
to be done was adding the code for producing
a notification. Finally, because the problems
themselves no longer exist, it is easier to try
attacks against the instrumented system with-
out worrying about the adverse effects they
could have on the system.

� It runs on multiple architectures, includ-
ing low-end Intel and Sparc systems, which
makes it easier to set up a network of instru-
mented systems for experimentation.

3.2 Sources of information

The sensors implemented were mapped to entries
in the CVE (Common Vulnerabilities and Expo-
sures) database [7, 20]. The CVE is not a taxon-
omy or a classification scheme, and is used only
as a fairly complete and recognized list of known
vulnerabilities and attacks. Linking each sensor to
a CVE entry facilitates discussion and reference,
and ensures that no repeated sensors are imple-
mented. For the work reported in this document,
version 20000118 of the database was used.

Information about the attacks themselves, in-
cluding exploits, was gathered from the common
sources on the Internet [5, 25, 29, 32, 37].

As a special case, sensors for different variants
of port scanning [13] were implemented. Port
scans are not considered attacks by themselves,
but are commonly a prelude to an attack, there-
fore useful to detect. Port scans do not have CVE
numbers.

3.3 Logging mechanisms

The sensors as reported in this document were
concerned more with correctness than with the
mechanism used for logging their results. For this
reason, these sensors use simple printf state-
ments to produce reports. Within the OpenBSD
kernel, these statements result in the messages be-
ing printed to the system console and stored in the

system message buffer (also accessible through the
standard dmesg command).

However, work is also underway to provide ap-
propriate logging mechanisms for embedded sen-
sors. We are working on determining which log-
ging techniques are more appropriate for the kinds
of information generated by the sensors and for the
ways in which that information is used. As of this
writing, a first implementation of a sensor-specific
logging mechanism has been finished, and the sen-
sors are being modified to use that mechanism in-
stead of the standard printf call.

3.4 Sensors implemented

In this section we describe the attacks for which
sensors have been implemented, and comment on
some specific issues about each one of them. For
each attack, its CVE number is mentioned, and in
most cases, the section of code in which the sen-
sor was implemented is shown (in many cases the
code has been reformatted for space). Thus, we
can see that most sensors are very short and sim-
ple, yet they provide very advanced detection ca-
pabilities (as shown in Section 3.5).

The added or modified lines have been high-
lighted in each code section. All the sensors have
been wrapped in #ifdef directives and in an if
clause, so that they can be disabled both at com-
pile time and at run time. We are in the pro-
cess of integrating the run-time control variables
to the kernel parameters mechanism available in
OpenBSD, through which some kernel parameters
can be modified at run time without the need to re-
compile the kernel. The ability to disable the sen-
sors at runtime may not be completely desirable,
as it offers the possibility for an attacker to disable
the sensors if he manages to obtain sufficient priv-
ileges in the system. For the purposes of testing,
however, the capability of enabling and disabling
sensors at runtime is necessary.

6

3.4.1 Land (CVE-1999-0016)

This attack consists of a TCP SYN packet sent
to an open port on the attacked machine with the
source IP address and port set to the same as the
destination. On a vulnerable machine, this puts
the kernel into an infinite loop sending ACK pack-
ets to itself in a interrupt level that prevents all
user processes from running, effectively locking
the machine.

OpenBSD 2.6 filters those packets shortly after
they have entered the system while the socket is
still in state LISTEN. The sensor has been placed
there, right before the packet is dropped.

case TCPS_LISTEN: f
...
if (ti->ti_dst.s_addr ==

ti->ti_src.s_addr) f
/* ESP */

#ifdef ESP_LAND
if (esp.sensors.land)

printf("LAND attacknn");
#endif

goto drop;
g

... g

3.4.2 Teardrop (CVE-1999-0052)

This attack consists of two overlapping IP frag-
ments. The first is a large fragment, while the
second fragment is short and “fits” within the first
fragment (it starts at a later offset but ends before
the first fragment). The IP reassembly routine in
vulnerable systems gets confused by the conflict-
ing offsets and tries to allocate memory for the
new data using a negative value, which crashes the
system. There are multiple derivatives of this at-
tack that exploit various fixes, devices and envi-
ronments. One of those will be discussed in the
next section.

In OpenBSD 2.6 a special check for this was put
in the reassembly code. Again the sensor has been
placed there.

i = p->ipqe_ip->ip_off +
p->ipqe_ip->ip_len -
ipqe->ipqe_ip->ip_off;

if (i > 0) f
if (i >= ipqe->ipqe_ip->ip_len) f

/* ESP */
#ifdef ESP_TEARDROP

if (esp.sensors.teardrop) f
printf("TEARDROP attacknn");
...

g
#endif

goto dropfrag;
g

3.4.3 PIX DoS (CVE-1999-0157)

This exploits the same bug as Teardrop, but it was
developed specifically for the Cisco PIX firewall,
which does not filter fragments with offset not
equal to zero. A special sensor for this has been
placed at the dots in the previous code segment.

if (p->ipqe_ip->ip_off > 0)
printf("PIX flavorednn");

3.4.4 TCP RST DoS (CVE-1999-0053)

This attack sends a forged TCP RST packet and
disconnects an established TCP connection, whose
port numbers the attacker knows or guesses [12].
Vulnerable TCP stacks do not check the sequence
number of the RST packet and reset a valid con-
nection. The sensor is placed in the check for
the attack that already exists in the code for RST
packet handling.

if (tiflags & TH_RST) f
if(ti->ti_seq!=tp->last_ack_sent)f
/* ESP */

#ifdef ESP_RSTDOS
if (esp.sensors.rstdos)

printf("TCP RST DOS attacknn");
#endif

goto drop;
g
... g

7

3.4.5 Ping of Death (CVE-1999-0128)

The ping of death is a fragmented ICMP echo re-
quest whose reassembled length is longer than the
maximum length of an IP packet. This is a com-
paratively old vulnerability, therefore a detailed
description is omitted here. OpenBSD 2.6 checks
for this vulnerability and the sensor is placed there.

if ((next+(ip->ip_hl<<2))
> IP_MAXPACKET) f

/* ESP */
#ifdef ESP_PINGOFDEATH
if (esp.sensors.pingofdeath &&

ip->ip_p == IPPROTO_ICMP)
printf("PING’O’DEATH attacknn");

#endif
... g

3.4.6 NetBSD TCP Race Condition (CVE-
1999-0396)

This attack stalls a blocking server by deleting a
socket after it is seen by the server, but before it is
accepted [22]. The attacker completes the three-
way handshake and then immediately disconnects.
The advisory [22] mentions using RST packets to
remove the socket, but FIN packets could also be
used, as in a fast port scanner like nmap [13]. This
attack has to be completed between the awaken-
ing of the server after the handshake and before it
calls the accept function on the new socket. An
attacker would most likely need more than one at-
tempt to achieve this. It would also be targeted to
one specific TCP server port. If both conditions
are true, the sensor that also detects port scans will
classify this as a race attack. FIN and RST pack-
ets with the initial sequence number plus one in
the established state are reported to the port scan
detector, which is discussed in a Section 3.4.15.

3.4.7 Linux Blind Spoofing (CVE-1999-0414)

Some versions of the Linux TCP implementation
are vulnerable to spoofing of TCP connections
without completing the three-way handshake [23].

The attacker does not need to guess the initial se-
quence number and can spoof connections from
addresses whose connections remain “invisible.”
The sequence of packets for the attack is: one SYN
packet, then possibly multiple packets, all without
ACK flag, and finally one FIN packet without the
ACK flag, or one packet with FIN and all the pay-
load data. Although the connection remains in the
SYN RECEIVED state, the FIN packet will cause
the delivery of queued data to the socket and its ap-
plication. OpenBSD 2.6 ignores the data of pack-
ets without the ACK flag. The sensor raises an
alarm on FIN packets without ACK flag in the state
SYN RECEIVED.

case TCPS_SYN_RECEIVED:
if (tiflags & TH_ACK) f
...

g else f
/* ESP */

#ifdef ESP_BLINDSPOOF
if (esp.sensors.blindspoof) f
if (tiflags & TH_FIN)
printf("BLIND SPOOF attacknn");

g
#endif

g

3.4.8 Win Nuke (CVE-1999-0153)

This attack sends out-of-band data to TCP port 139
(netbios-ssn). Most vulnerable systems (although
this is a Windows-specific attack, other products,
such as SCO OpenServer, have shown to be vul-
nerable as well) crash. This attack can only oc-
cur if the TCP three-way handshake has been com-
pleted successfully. Therefore, the attack requires
a server listening on that port. In UNIX systems
this server could be SAMBA [30].

In our model, it would have been preferable to
place the sensor in the code of the SAMBA server,
because this attack is specific to that service. For
the purposes of this study, a sensor has been placed
in the kernel.

This case exemplifies one of the big advantages
of embedded sensors: although the vulnerability

8

does not occur in OpenBSD, a sensor can be im-
plemented to detect the attack.

/* TCP input routine */
...
/* ESP */
#ifdef ESP_WINNUKE
if (esp.sensors.winnuke) f
if ((ntohs(th->th_dport) == 139)

&& (th->th_urp))
printf("WINNUKE attacknn");

g
#endif

3.4.9 Echo-Chargen Connections (CVE-1999-
0103)

This attack spoofs packets between two attacked
machines on the echo or chargen port, respec-
tively, using UDP. Those services are provided by
the inetd program. Therefore, the sensors are best
placed in that program, where the error occurs.
The code for these sensors is longer (with respect
to the other sensors shown—but only 25 lines were
added to the inetd.c file) and not shown here.

3.4.10 TCP Sequence Number Prediction
(CVE-1999-0077)

If the initial TCP sequence number is not cho-
sen randomly, an attacker might guess it and com-
plete the three-way handshake with a spoofed IP
address. Vulnerable implementations use a pre-
dictable algorithm for sequence number genera-
tion. OpenBSD 2.6 does not. The sensor works by
detecting out-of-sequence packets with the ACK
flag on sockets in state SYN RECEIVED and
SYN+ACK packets in state SYN SENT. We show
the code from SYN RECEIVED. The SYN SENT
state is very similar.

if (tiflags & TH_ACK) f
...
if(SEQ_LEQ(th->th_ack,tp->snd_una)||

SEQ_GT(th->th_ack,tp->snd_max))f
/* ESP */

#ifdef ESP_TCPSEQNR
if (esp.sensors.tcpseqnr)

printf("TCP SEQNOPRED attacknn");
#endif

goto dropwithreset;
g ... g

3.4.11 TCP SYN Flood (CVE-1999-0116)

The target is flooded with forged TCP SYN pack-
ets that fill the connection table or even main mem-
ory and cause a DoS on new connections or over-
load the host, respectively [31].

OpenBSD 2.6 deals with this attack in a spe-
cial subroutine. If the number of half-open con-
nections reaches a certain limit, every time a new
connection is received, one of the pending connec-
tions in state SYN RECEIVED is dropped. It first
tries to drop a connection to the same port. The
sensor is placed at the entry of this subroutine. The
code of the sensor is similar to other sensors shown
and is omitted here.

3.4.12 ICMP Unreachable messages (CVE-
1999-0214)

This attack sends a forged ICMP error packet of
type unreachable, which has the effect of reset-
ting an established connection on vulnerable sys-
tems. This attack relies on a combination of flaws
in the design of IP and is therefore hard to pre-
vent and detect. ICMP packets may be caused
by the remote host or from any gateway along the
path. They might be generated for several reasons,
even during an established connection, e.g. route
changes. For protocols using UDP there is no clear
distinction between a cleverly forged and a real
ICMP packet. For TCP it is uncommon that during
an established session errors occur. OpenBSD 2.6
ignores those messages and the sensor is placed
there.

3.4.13 ICMP Redirect messages (CVE-1999-
0265)

The CVE list indicates that some TCP/IP imple-
mentations, especially in embedded controllers,

9

are vulnerable to malformed ICMP redirect mes-
sages. The documentation is confusing about
those malformed packets and the general design
vulnerability of ICMP redirects. Technical details
about the malformed packet are not published. Our
sensor therefore tries to detect malicious, well-
formed redirect messages.

An ICMP redirect message that did not origi-
nate from the current gateway, or that redirects to
a gateway on a different network, is suspicious.
In OpenBSD 2.6 such messages fail to change
the routing tables, and the corresponding code is
where the sensor is placed. This method of de-
tection has the unfortunate effect that an attacker
from the local network may still be able to per-
form the attack. For this reason, and under the rea-
soning that ICMP redirect messages are a rare oc-
currence, we have also implemented a sensor that
emits an alert on every ICMP redirect message re-
ceived. This sensor can be turned off if necessary.
The sensors were placed in the ICMP layer.

/* ESP */
#ifdef ESP_ICMPREDIRECT
if (esp.sensors.redirectsens)
printf("REDIRECT messagenn");

if (esp.sensors.redirecterr) f
struct rtentry *rt;
rt = rtalloc1(sintosa(&icmpsrc),0);
if(rt &&

ifa_ifwithnet(sintosa(&icmpdst))
!= rt->rt_ifa)

printf("REDIRECT attacknn");
else
if (rt &&

satosin(rt->rt_gateway)
->sin_addr.s_addr
!= ip->ip_src.s_addr)

printf("REDIRECT attacknn");
g
#endif

3.4.14 Smurf / Fraggle (CVE-1999-0513)

In Smurf the attacked host is flooded with ICMP
echo reply packets that are generated by forged
ICMP echo request packets sent to an IP broadcast

addresses, appearing to come from the victim host.
All the hosts in the address range reply, flooding
the target. One packet from the real attacker can
cause a flood of packets to the target. Therefore
this attack involves two parties: the reflector ad-
dressed by the broadcast packet and the target, the
spoofed source address.

OpenBSD 2.6 is configurable to ignore IP
broadcast echo requests, but does not in the default
configuration, because echo requests to broadcast
addresses are a valuable tool for network manage-
ment. Nevertheless one sensor detects those pack-
ets and raises an alarm that this machine has been
used as a reflector for Smurf.

case ICMP_ECHO:
if (!icmpbmcastecho &&

(m->m_flags&(M_MCAST|M_BCAST))
!= 0) f

/* ESP */
#ifdef ESP_SMURF

if (esp.sensors.smurf_reflect)
printf("SMURF as reflectornn");

#endif
... g

The echo replies arriving at the flooded host are
not structurally distinguishable at the ICMP layer
from other echo replies. ICMP echo replies do not
contain a field for multiplexing the packet to a lis-
tening socket (like a port number in UDP). How-
ever, the ping program (which is the most frequent
cause for the generation of echo requests) sets the
identification field in the ICMP packet to its pro-
cess id (pid) and listens on a raw socket for all
ICMP traffic, reporting replies if the address, se-
quence number and id field match. Our sensor uses
the same method on all echo replies, by compar-
ing the ICMP id to the pid of all raw ICMP sock-
ets (this is done in the esp smurf() function,
not shown). If no match is found, the packet is
discarded at the ICMP layer and a counter for un-
requested echo replies is increased. If a match is
found, it has to be delivered to the appropriate raw
sockets and processed there.

case ICMP_ECHOREPLY:
/* ESP */

10

#ifdef ESP_SMURF
if (esp.sensors.smurf) f
if (esp_smurf(ip, icp))
goto freeit;

goto raw;
g

#endif

To make this method work, the process ID has
to be stored when ICMP raw sockets are created.
This shows another advantage of using embedded
sensors: additional information can be made avail-
able when necessary for the purposes of detection.

case PRU_ATTACH:
...
/* ESP */
#ifdef ESP_SMURF

if (esp.sensors.smurf &&
((long) nam) == IPPROTO_ICMP)

so->so_pgid = curproc->p_pid;
#endif

The alarm of Smurf packets is rate limited. A
legitimate use of ping will probably be interrupted
when there are still echo reply packets in the net-
work to be delivered to the host. Those packets
should not raise an alarm, although they do match
the signature. A network layer timer that runs for
three seconds examines the counter and raises an
alarm only if it exceeds a threshold.

A derivative of the Smurf attack is the Fraggle
attack, which is based on the same principle, but
uses UDP instead of ICMP packets. The detec-
tion of this attack is much harder because there are
many legitimate UDP services based on IP broad-
casts (e.g. BOOTP, RIP and NetBIOS). We have
implemented sensors for this attack, but they are
still unreliable and in development.

3.4.15 Port Scanning

Port Scanning is a probing technique that sends
packets to a large number of ports trying to iden-
tify the services running on that machine [13].
There are several different packets that can be used
for this. A short description of them and the state

of the socket when those packets arrive follows.
Those packets are then reported to the port scan
detector, which accumulates them in a reporting
routine and prints the summarized alarm of the
scan in a timer-based alarm routine. Additionally
to these special packets, all TCP packets that can-
not be delivered to a socket are reported.

Full scan: The attacker completes the three-way
handshake and then disconnects or reports a
connection error. For the target host these
are either SYN packets with no socket or
FIN/RST packets in the established state with
the initial sequence number plus one.

Half or SYN Scan: The attacker only sends a
forged SYN packet and decides on the reply
(RST or SYN+ACK). If the port is open an
RST is sent after the SYN+ACK. For the tar-
get host, these are again SYN packets with
no socket or RST packets received in state
SYN SENT.

FIN / XMAS / NULL Scans: These are packets
with special flag combinations— FIN: only
FIN flag; XMAS: FIN+PUSH+URG; NULL:
no flags. These packets often get dropped on
listening ports without an RST packet reply,
while closed ports do reply. OpenBSD 2.6 is
vulnerable to this. These packets are seen by
the target host in ports that are in the LISTEN
state.

3.4.16 Detecting port scans

Although UDP-based port scans are also possible,
we have only implemented detection for TCP port
scanning. The following variations of the tech-
niques previously mentioned exist:

� FTP bounce scanning does full TCP scans
and hides the attacker’s IP address from the
target.

� Fragmentation scanning may bypass some
packet filters on the path.

11

� ID scanning uses Half Scanning and hides the
attacker’s IP address. Reserved flag bits may
be set in the TCP header to bypass some port
scan detectors.

All these appear to the attacked host as one of the
scanning techniques mentioned before.

The reporting procedure (esp portscan())
logs all reported packets into a data structure
where port scans are accumulated, indexed by
source address, to support detection of simulta-
neous port scans from multiple sources. It keeps
a table of all IP addresses that recently sent port
scans. A chained hash table is used to access the
table field. The length of the chain is fixed to
limit the processing overhead. This technique has
been used also in scanlogd [13]. Furthermore, all
attackers are also entered at the tail of a doubly
linked list sorted by recent access. This may re-
quire setting five list pointers.

The alarming procedure runs every three sec-
onds and processes the sorted linked list of attack-
ers for entries beyond a threshold (ten seconds), if
there are any. It then sends an alarm about the tech-
niques used, the attacker’s IP address and a sum-
mary of the ports probed. To distinguish full TCP
scans from the NetBSD Race attack, multiple con-
nects to the same port, are reported as race attacks,
while a single probe or multiple probes to different
ports, are reported as a port scan.

The advantages of this type of port scan detec-
tion are a low overhead, as not many packets have
to be processed by the reporting routine, and the
list to check for the alarming routine is sorted, re-
quiring minimal overhead if no alarms are gener-
ated. It also provides a high degree of accuracy
that can reliably detect even a scan for a single
port, which was an attack observed frequently in
the test environment that is connected to the Inter-
net.

3.5 Testing the sensors

A test suite of exploit programs was assembled to
test the sensors. The exploit programs were ac-

quired preferably from the same sources that pub-
lished the vulnerabilities, if they made them avail-
able. Those exploits supposedly work against vul-
nerable systems. They also provide more tech-
nical details than some descriptions. However,
for the following attacks exploits were not avail-
able: TCP RST DoS, TCP Sequence Number Pre-
diction, ICMP Unreachable and Redirect Attacks,
NetBSD Race and Linux Blind Spoof. For these
attacks, we wrote our own exploits according to
the descriptions. Some publicly available exploits
worked incorrectly, e.g. Land, due to an incor-
rect TCP header checksum, many Teardrop at-
tacks, due to ordering errors, and some Smurf
attacks, due to an incorrect socket for broadcast
packets. If no working substitute was found, we
wrote our own exploits. For port scanning nmap
was used. A successful Fraggle detection was not
possible due to its inherent difficulties, and the
Echo-Chargen sensor does not report correctly, be-
cause of I/O redirection in inetd (this will be cor-
rected once we start using a sensor-specific report-
ing mechanism). The test suite was run supervised
from a remote machine on the same local area net-
work (LAN) and all attacks were detected reliably.

An independent tester ran the same set of at-
tacks. First the attacks were run over the cam-
pus network, with different network technologies
and possibly even filtering in between. The re-
sults were that only a very small number of attacks
arrived at the target. This experience shows that
most attacks are of rather low quality (as also the
experiences above indicate) and are very fragile to
the network environment. The packet log shows
that all received attacks were detected. The test
was repeated from a machine on the same LAN
and the results match those of the supervised test.

In the testing period the host reported some at-
tacks not generated as a controlled experiment, no-
tably port scans. To verify their correctness they
were compared to the packet log and all could be
verified as real attacks.

12

4 Conclusions and future work

We have shown an application of the use of em-
bedded sensors for intrusion detection, in partic-
ular to the detection of common network attacks
and port scans.

The excellent detection rate is very encouraging
and shows that this approach to intrusion detection
is very promising. The simplicity of most detec-
tors suggests that the impact on the host is low, but
it should be verified with benchmarks. We imple-
mented sensors for 15 different network attacks by
adding only 73 lines of code to the OpenBSD ker-
nel, 25 lines to the inetd program, and two support
files with a total of 354 lines of code. Most sensors
are no longer than 4 lines of code, and some sen-
sors are for platforms other than OpenBSD (like
WinNuke, which is a Windows-specific attack),
which shows that a single host instrumented with
internal sensors can detect attacks for different ar-
chitectures and operating systems.

The sensors have been the simplest in the cases
where the kernel itself already checks for the at-
tacks. This has been mostly the case for recent vul-
nerabilities that depend on implementation flaws:
Land, Teardrop, TCP RST DoS and ICMP Un-
reachable DoS. Some sensors required additional
checks at specific places to raise an alarm: Ping of
Death, NetBSD race and Linux Blind Spoof.

There are attacks that are based in the design of
the protocols: SYN flood, Port Scanning, ICMP
redirects and ICMP unreachable. ICMP redirects
and ICMP unreachable attacks are undetectable if
they are done cleverly. Port Scanning is unde-
tectable if no connections attempts to closed ports
are made, which contradicts its intention of gath-
ering information about the target. SYN floods are
prevented in OpenBSD 2.6 by resource limitation
and active disconnects of pending connections.

For the scope of this study, mainly the kernel
has been investigated. But as the WinNuke and
Echo-Chargen cases show, there are network at-
tacks for which sensors are better placed outside
the kernel. Also some sensors require more com-
putation, namely Smurf and Port Scanning. If rate

information is helpful or necessary, sensors split
into two parts: a reporting function that gathers
data and an alarming function that checks for at-
tack thresholds and raises the alarms.

Fraggle attacks require additional work. Sen-
sors in a set of possibly vulnerable applications
combined with a rate limitation should detect
them. In future work sensors could be placed into
all states of TCP, not only in the initial states of
a connection, reporting all unexpected flag com-
binations. This might be able to detect yet un-
exploited vulnerabilities. A UDP port scanner
was planned, but not implemented, and a larger
list of vulnerabilities should enhance the results
achieved.

The reporting mechanism used in this study was
the one already available in the system. As the
Echo-Chargen sensor shows, this is not always
convenient, and special reporting mechanisms are
necessary. We are currently researching the needs
and problems related to these reporting mecha-
nisms, taking into account the specific needs and
behavior of the sensors. An initial implementa-
tion has been done, and the existing sensors are
being modified to use it. One of the problems to
be solved is that sensors may exist in both kernel-
and user-space processes. To avoid unnecessary
context switches, hooks into the reporting mecha-
nism should exist in both spaces. However, all the
results need to be eventually coalesced for analy-
sis. We have not determined yet the best way of
handling this data flow.

Work is also underway in the implementation of
sensors for other types of attacks and intrusions,
not only network-based.

As more sensors are implemented and more in-
formation is collected, we expect to gain insight
into the types of information needed to detect dif-
ferent intrusions and attacks. Also, if embedded
sensors show to be a viable approach, maybe op-
erating system vendors will start including them
in their distributions, allowing intrusion detection
systems to have access to much more useful data
about system behavior.

13

5 Acknowledgments

We would like to thank Christopher Telfer for per-
forming the unsupervised tests.

6 Author biographies

Florian Kerschbaum is a Ph.D. student at Purdue
University where he is working for CERIAS. He
obtained his M.S. in Computer Science from Pur-
due University. His research interests are Intrusion
Detection and Security Algorithms.

Eugene H. Spafford is a professor of Com-
puter Sciences at Purdue University, the univer-
sity’s Information Systems Security Officer, and
is Director of the Center for Education Research
Information Assurance and Security. CERIAS
is a campus-wide multi-disciplinary Center, with
a broadly-focused mission to explore issues re-
lated to protecting information and information re-
sources. Spaf has written extensively about infor-
mation security, software engineering, and profes-
sional ethics. He has published over 100 articles
and reports on his research, has written or con-
tributed to over a dozen books, and he serves on
the editorial boards of most major infosec-related
journals.

Dr. Spafford is a Fellow of the ACM, Fellow
of the AAAS, senior member of the IEEE, and
is a charter recipient of the Computer Society’s
Golden Core award. Among other activities, he
is chair of the ACM’s U.S. Public Policy Com-
mittee, a member of the Board of Directors of the
Computing Research Association , and is a mem-
ber of the US Air Force Scientific Advisory Board.
He regularly serves as a consultant on information
security and computer crime to law firms, major
corporations, U.S. government agencies, and state
and national law enforcement agencies around the
world.

Diego Zamboni is a Ph.D. student at Purdue
University, where he is working in CERIAS in In-
trusion Detection research. He obtained his M.S.
in Computer Science from Purdue University. Pre-

viously he obtained his bachelor’s degree in Com-
puter Engineering from the National Autonomous
University of Mexico, where he was in charge of
the security for the Unix machines at the Super-
computing Department. He also established the
University’s Computer Security Area, one of the
first Computer Security Incident Response Teams
in Mexico.

More information about the authors can
be found at http://www.cerias.purdue.
edu/personnel.php3.

References

[1] Aleph One. Smashing the stack for fun and
profit. Phrack Magazine, 7(49):File 14,
1996. Appeared also on Bugtraq
(http://www.securityfocus.com/
archive/1/5667).

[2] Jai Sundar Balasubramaniyan, Jose Omar
Garcia-Fernandez, David Isacoff, Eugene
Spafford, and Diego Zamboni. An
architecture for intrusion detection using
autonomous agents. In Proceedings of the
Fourteenth Annual Computer Security
Applications Conference, pages 13–24.
IEEE Computer Society, December 1998.

[3] Bruce Barnett and Dai N. Vu. Vulnerability
assessment and intrusion detection with
dynamic software agents. In Proceedings of
the Software Technology Conference, April
1997.

[4] S.M. Bellovin. Security problems in the
TCP/IP protocol suite. Computer
Communication Review, 19(2):32–48, April
1989.

[5] BugTraq. Mailing list archive. Web page at
http://www.securityfocus.com/,
1999–2000.

[6] CERT Coordination Center. CERT/CC
statistics. Web page at

14

http://www.cert.org/stats/
cert_stats.html, 1999.

[7] Steven Christey, Mann, and Hill.
Development of a common vulnerability
enumeration. Workshop RAID99,
September 1999.

[8] Cisco Systems. Cisco secure IDS. Web page
at http://www.wheelgroup.com/
univercd/cc/td/doc/pcat/nerg.
htm, January 2001.

[9] Douglas Comer and David Stevens.
Internetworking with TCP/IP: Principles,
Protocols and Architecture. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1991.
ISBN 0-13-468505-9.

[10] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan
Krsul, and Eugene Spafford. IDIOT—users
guide. CSD-TR 96-050, COAST
Laboratory, Purdue University, 1398
Computer Science Building, West Lafayette,
IN 47907-1398, September 1996. URL
http://www.cerias.purdue.edu/
techreports/public/96-04.ps.

[11] Dan Farmer and Wietse Venema. Computer
forensics analysis class handouts. Web page
at http:
//www.fish.com/forensics/,
August 1999. Accessed in May 2000.

[12] FreeBSD Security Officer. TCP RST denial
of sevice. FreeBSD Security Advisory
SA-98:07, FreeBSD, Inc., October 1998.
URL ftp://ftp.FreeBSD.org/pub/
FreeBSD/CERT/advisories/
FreeBSD-SA-98:07.rst.asc.

[13] Fyodor (fyodor@dhp.com). The art of port
scanning. Internet
http://www.insecure.org/nmap/
nmap_doc.html, September 1997.

[14] R. Heady, G. Luger, A. Maccabe, and
M. Servilla. The Architecture of a Network
Level Intrusion Detection System. Technical
report, University of New Mexico,
Department of Computer Science, August
1990.

[15] L. Heberlein, G. Dias, K. Levitt,
B. Mukherjee, J. Wood, and D. Wolber. A
Network Security Monitor. In Proceedings
of the IEEE Symposium on Research in
Security and Privacy, May 1990.

[16] Gene H. Kim and Eugene H. Spafford. The
design and implementation of Tripwire: A
file system integrity checker. In Proceedings
of the 2nd ACM Conference on Computer
and Communications Security, pages 18–29,
Fairfax, Virginia, November 1994. ACM
Press.

[17] T. F. Lunt, A. Tamaru, F. Gilham,
R. Jagannathan, P. G. Neumann, H. S.
Javitz, A. Valdes, and T. D. Garvey. A
Real-Time Intrusion Detection Expert
System (IDES) – Final Technical Report.
Technical report, SRI Computer Science
Laboratory, SRI International, Menlo Park,
CA, February 1992.

[18] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the
4.4BSD Operating System. Addison-Wesley,
Reading, MA, USA, 1996. ISBN
0-201-54979-4.

[19] Merriam-Webster. “intrusion”.
Merriam-Webster OnLine: WWWebster
Dictionary.
http://www.m-w.com/dictionary,
1998. Accessed on May 16, 1998.

[20] MITRE. Common vulnerabilities and
exposures. Web page at
http://cve.mitre.org, 1999–2000.

15

[21] Biswanath Mukherjee, Todd L. Heberlein,
and Karl N. Levitt. Network intrusion
detection. IEEE Network, 8(3):26–41,
May/June 1994.

[22] NetBSD Security Officer.
select(2)/accept(2) race condition in TCP
servers. NetBSD Security Advisory
1999-01, The NetBSD Foundation, 1999.
URL ftp:
//ftp.NetBSD.ORG/pub/NetBSD/
misc/security/advisories/
NetBSD-SA1999-001.txt.asc.

[23] Network Associates, Inc. Linux blind TCP
spoofing. CIAC Bulletin J-035, Computer
Incident Advisory Capability, March 1999.
URL http://www.ciac.org/ciac/
bulletins/j-035.shtml.

[24] OpenBSD. Web page at
http://www.openbsd.org/,
1999–2000.

[25] Packet Storm. Web page at http:
//packetstorm.securify.com,
2000.

[26] Phillip A. Porras and Peter G. Neumann.
EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In
Proceedings of the 20th National
Information Systems Security Conference,
pages 353–365. National Institute of
Standards and Technology, 1997.

[27] Richard Power. 1999 CSI/FBI computer
crime and security survey. Computer
Security Journal, Volume XV(2), 1999.

[28] Thomas H. Ptacek and Timothy N.
Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion
detection. Technical report, Secure
Networks, Inc., January 1998.

[29] RootShell. Web page at
http://www.rootshell.com, 2000.

[30] Samba. Web pages at
http://www.samba.org, 2000.

[31] Christoph L. Schuba, Ivan V. Krsul,
Markus G. Kuhn, Eugene H. Spafford,
Aurobindo Sundaram, and Diego Zamboni.
Analysis of a denial of service attack on
TCP. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages
208–223. IEEE Computer Society, IEEE
Computer Society Press, May 1997.

[32] SecurityFocus. Web page at
http://www.securityfocus.com/,
1999–2000.

[33] Eugene Spafford and Diego Zamboni. Data
collection mechanisms for intrusion
detection systems. CERIAS Technical
Report 2000-08, CERIAS, Purdue
University, 1315 Recitation Building, West
Lafayette, IN, June 2000.

[34] Eugene H. Spafford and Diego Zamboni.
Intrusion detection using autonomous
agents. Computer Networks, 34(4):547–570,
October 2000.

[35] W. Richard Stevens. TCP/IP Illustrated,
volume Volume 2—The Implementation of
Professional Computing Series.
Addison-Wesley, 1994.

[36] Kymie M. C. Tan, David Thompson, and
A. B. Ruighaver. Intrusion detection
systems and a view to its forensic
applications. Technical report, Department
of Computer Science, University of
Melbourne, Parkville 3052, Australia, year
of publication unkown. URL
http://www.securityfocus.com/
data/library/idsforensics.ps.

[37] X-Force. Web page at
http://xforce.iss.net, 2000.

16

	CERIAS Tech Report 2002.pdf
	Florian Kerschbaum, Eugene H. Spafford, Diego Zamboni

