

CERIAS Tech Report 2000-17

CERIAS Classic Vulnerability Database
User Manual

Guangfeng Song, Salvador Mandujano, Pascal Meunier

Center for Education and Research in
Information Assurance and Security

Purdue University, West Lafayette, IN 47907

1 Introduction

This document describes the vulnerability database (vdb) html, Java and
command-line interfaces. For installation and configuration, please refer to the
Vulnerability Database installation manual. There are three ways to use the
vdb (Fig.1). For read access and searches, the web interface using Perl and
Apache is the most convenient. It uses http authentication, and is comprised of a
server script and a client script. For inserting records in the vdb or reading
existing ones, the Java interface (requiring X-windows) is used. For deleting
records, one must use a Perl script from a command-line interface. It is also
possible to search from a command-line interface.

Classic CERIAS vdb

read

search

insert

delete

Web user

Unix command-
line user

Java X-
windows user

Figure 1. UML use case diagram for different types of users.

2 The WWW Interface

The preferred mechanism for searching the database is the WWW interface. This
interface provides an easy-to-use browsing tool that displays records and
provides comprehensive search mechanisms. Note that a search server written
in Perl must be started before using this interface (see the installation
instructions and the UNIX command line interface below). If the WWW interface
stops working, the most likely reason is that the Perl script stopped functionning.

2.1 How to start

The WWW interface requires that you point a WWW browser to the URL of your
database installation, such as http://amber.cerias.purdue.edu/cgi-bin/vdb.
Machines must be authorized to connect to the service. Users will also need a
user name and a password to access the database. Manuals are available from
the Main page of the WWW interface.

2.2 How to find records

By clicking on the Search link on the Main page, you can perform the following
types of searches:

Search Titles:
Simply input any string (including part of a word) to be matched against

the title of vulnerabilities. The server will list alphabetically the matching
vulnerabilities.

Search Records:
Type in any string to be searched in the content of database records. The

matched results (records that contain this string) will be listed alphabetically
with the related field partially displayed.

Search by Perl Regular Expression:
 A Perl regular expression search will be performed on the database and

prints in formatted HTML the search results. Note that special characters in the
regular expression are escaped because they are a problem in the web server.
Hence, the search server converts these characters back to normal before using
the regular expression (with one notable exception: the back tick.).

Besides searching for specific strings, you can also click the List Records link on
the Main page to display all the records in the database alphabetically.

2.3 Dump Records

Click the "Dump Records" link on the Main page to list all the records in raw text,
which can be saved for further data processing.

3 The UNIX command-line interface

You will need to locate the Perl directory ~/vdbase/perl to run the following
commands.

3.1 Searching the Database

The script pattern match.pl takes as arguments a series of words and searches
the vulnerability database for matches on those keywords. It loads the database
index and calls the fgrep program to search every file called V in the

~/vdbase/vdb/ directory. Searching the database this way can bring any
machine to its knees (every search opens thousands of files) so we do not
recommend that you use it unless you have no other choice.

The same directory contains two other programs that are particularly useful for
searching the database. The first is a program called searchServer.pl and it
essentially loads the entire database to memory and does a pattern search using
Perl. The server will check to see if new records have been added or if records
have been modified every thirty seconds and will load/reload as needed.

The second program is called searchClient.pl and it contacts the server and gives
it a string to search for and displays whatever the search server returns.

The match is similar to fgrep in that the entire text passed has to be matched.
Unlike fgrep, however, the search string is altered a little bit before used in the
server. In its output the search server prints the results with very simple
formatting so that what you see in the screen is not likely to be in the same
format as what you see in the database.

To run the search server, type:

% ./searchServer.pl -p 6768

Where the -p option tells it which port to use.

To run the client, type:

% ./searchClient.pl -p 6768 -k "String to search for"

Where the -p option tells which port the server should use. Be warned that the
server is not a full-blown daemon and should not be run in the background of an
obscured window. Create a separate xterm window for it and look at it
periodically to make sure that no errors are being ignored.

3.2 Deleting a record

The name of the script that you need to use is "removerecord".

i. Go to the ~/vdbase directory
ii. Execute the script passing as only parameter the name of the
 vulnerability you want to remove. For instance:

% removerecord lpr_buffer_overrun

 The script will remove all the subdirectories and files related to
 that name.

iii. Finally, edit the /home/projects/proj-vdb/vdbase/vdb/Vulnerabilities file,
and remove the line with the name of the vulnerability. The output of the
program should look something like this:

earthsea 71 % removerecord mental_overflow_sam
Removing field: access_required
Removing field: category
Removing field: class
Removing field: complexity_of_exploit
Removing field: dataentry
Removing field: desc
Removing field: direct_impact
Removing field: indirect_impact
Removing field: krsul_class
Removing field: modifications
Removing field: os_type
Removing field: source_addres
Removing field: system
Removing field: system_verbatim
Removing field: system_version
Removing field: thac_cavail
Removing field: thac_conf
Removing field: thac_create
Removing field: thac_destroy
Removing field: thac_disclose
Removing field: thac_exec
Removing field: thac_integrity
Removing field: thac_misrep
Removing field: thac_modify
Removing field: thac_observe
Removing field: thac_repudiate
Removing field: title
Removing field: vendor

4 The Java Interface

4.1 Recovery from crash

The Java GUI may crash, especially in circumstances where the drop-down
menus are used before the previous operation has completed. In addition, it
implements record locking to allow multiple people access to the database at the
same time. If the program crashes before it released the locks on the records you
were editing (which happens when you save or when you exit), it is possible that
the next time you use the program you may have to clean the locks by hand.
The program will tell you how to do that, but be sure that the lock that you clean
by hand is yours! It is possible that someone else may be editing that record. You
can do that by checking the ownership of the lock-file it created.

4.1 Running the GUI Interface

There is a shell script that sets the Java class path and runs the GUI interface.
We recommend that to run the interface by creating the following alias: "alias
vdbJava $JAVAGUI/runvdbgui."

Please, do not run the database using another command! The script makes sure
that your umask is set to 007 and hence the files created by the database will
have the correct permissions. The script also makes sure that your classpath
contains all the packages needed to run the system. If your umask is not 007
then it is possible that the files you create using the Java GUI will not be readable
or writable by anyone else. This has the potential for breaking lots of things.

4.2 Java Interface Menu

In the Java interface, vulnerability entries are listed on the left of the screen.
Double clicking on an item on a entry will display the contents of that
vulnerability on the right of the screen.

There's a drop-down menu for the interface. The File menu has 5 options.

1) About: for displaying product information
2) Save Changes: for saving your changes to the database. You must invoke this
menu items to have your changes saved after adding or editing database entries.
Otherwise, your changes will be lost. Note that when performing any change or
adding a new entry, changes
should be saved twice:

i. In the edition screen, click "Save Changes". This saves the
 changes to RAM memory.
ii. In the main screen, under the "File" menu, click "Save Changes"
 to actually write the changes to disk.

3) Print item to file: for exporting the current record to a pure text file.
4) MIME export record: for exporting the record as a multi-part MIME file.
5) Exit: for closing the java interface

The View menu has 4 options.
1) Display Fields: for indicating to the GUI interface to eliminate from the record
display selected fields. This is particularly useful when fields such as patches and
exploit scripts clutter the screen and the user wishes to view records without
displaying these fields. When printing records the interface will also only print
the fields as indicated by this menu.
2) Show classifiers: for displaying the classifiers used for the database
3) Classifier description: for explaining classifiers
4) Rating system description: for explaining the field rating system

The Edit menu has 3 options.
1) Edit Selected Entry: for editing the current record in the database
2) Add New Entry: for adding new records to the database. When you create a
new record, a dialog is presented to the user requesting a record ID and title for
the new vulnerability. Once this information is presented a new blank record is
created for that vulnerability.

3) Deleting an entry
This is not implemented in the Java interface. One must use the

command line interface (see 3.2).

4.3 Entering MIME parts

All text fields where you can type information can have MIME parts inserted
within the text1 MIME parts are manipulated by using the following keyboard
commands while in the text field:

<control-i>: Insert textual mime part. Opens a dialog that allows the user to type
or paste text into the field and insert it as a MIME part. Important Note: The
editor is not smart enough, nor it should be, to notice that you have inserted a
MIME part and that it should remove the corresponding file if you decide to
discard your changes to the record. Hence, if you add a MIME part and then
discard your changes to the record you will have a MIME part file in the
$MIMEINCLUDES directory that will not be referenced by any record. Hence,
delete the MIME parts created manually before discarding your changes to the
record if you want the MIME parts to be discarded too!

<control-d>: Delete MIME part. This option deletes the MIME part where the
cursor is located. The MIME include directive is removed from the text and the
MIME part file is deleted from the file system.

Fields that have associated classifiers can also have MIME parts. However, we
don't recommend that this be done as there are utilities will not work correctly in
this case.

<control-e>: Edit MIME part. If the MIME part is editable then this command
allows the user to edit the part in a special MIME part editor.

<control-v>: View the MIME part. Displays the content of the MIME part in a
special window. <control-x>: Export MIME part. Not implemented yet! Allows
the user to export this part to a multi-part MIME file that can be viewed with an
external viewer or that can be send via email.

<control-m>: View part with an external viewer. If the MIME part is not a
textual part then it cannot be viewed using the control-v command. This
command saves exports the part as a temporary file and calls an external MIME
viewer to display the part.

<control-f>: MIME encode a file. This command opens a file dialog box and lets
the user select an external file that must be MIME encoded and saved to a MIME
part for the record. Once the file is selected, the interface will attempt to guess
the MIME type and will open a dialog box to confirm that the type selected is
indeed correct. If it is not, then select the correct type and proceed with the
conversion.

MIME parts are highlighted in the main window and can be viewed by double
clicking on the name of the included part. Bug Note: Under some window
managers in UNIX, a double click is defined as two Fields that have associated
classifiers display the classifier name in parenthesis under the field name. Click
in the field name to display the allowable values for the field.

5 Field descriptions and classification procedures

This section describes the fields of the database. The value of the database
depends on Objectivity, Determinism, Repeatability and Specificity.

 Objectivity: the features must be identified from the object known and not from
the subject knowing

Determinism: there must be a clear procedure that can be followed to extract
the feature

Repeatability: several people extracting the same feature for the object must
agree on the value observed

Specificity: the value for the feature must be unique and unambiguous.

In this database, decision trees are used to limit the ambiguity associated with
certain fields. In addition, a rating system helps to quantify the certainty on
the value of a field.

5.1 Classifiers and rating system

When editing a record the interface will open a new window, shown in Figure 2,
that contains fields and pop-up menus for entering data. Fields that have
classifiers are marked by including the name of the classifier in parenthesis
under the field name and you can display the classifier by clicking on the name
of the field. If the field has a classifier and is a text field, then you are not
required to enter data that matches the classifiers. However, the GUI will
complain about it and we strongly recommend that you do stick with pre-defined
choices.

Some fields in the database have associated confidence ratings that give users an
idea of how reliable is the data for that particular field. The rating system is as
follows:

Value of 0: Item has not been rated. Users will generally make no assumptions
about the information in this field.

Items with a rating of 0 should not be trusted or used to justify any results.

Value of 1: Item is likely to be a guess or speculation.

Value of 2: Item is not likely to be correct and limited trust should be put on it.

Value of 3: Item is likely to be only partially correct, may contain errors, may be
incomplete, etc.

Fields that have associated
classifiers display the classifier
name in parenthesis under the
field name. Click in the field
name to display the allowable
values for the field.

Popup menus show fields that are
defined as choice classifiers in the
database schema.

Fields that have ratings
associated with them will
display these pop-up menu bars

Figure2. Rating of classifier confidence

Value of 4: Item seems to be correct but has not been verified by a trusted party.
The operator that entered this information, to the best of his knowledge, believes
the information to be accurate.

Values of 5: Item is correct and has been verified by a trusted entity. The
operator has evidence that the item is correct and can guarantee, with a high
probability, that the item contains accurate and complete information.

When entering data you should be especially careful to enter the appropriate
rating for the data that you are entering. Leaving that rating at its default
value of zero will cause the data that you are entering to be ignored in automatic
processes.

The following figures show the classifiers in the order that will be needed in the
Java interface:

i. Indirect impact
 This feature attempts to identify the indirect or ultimate impact of the
vulnerability. This is the worst possible thing that can happen some time after
the exploitation of the vulnerability, barring the exploitation of other
vulnerabilities.

ii. Direct impact
This is the immediate threat posed by the atomic exploit of (i.e., the smallest
action that exploits) the vulnerability. Direct impacts happen immediately
upon the exploitation of the vulnerability.

iii. Nature of threat. This refers to the immediate risks that the vulnerabilities
present (much like the direct impact). Each of these features can take the values
"Yes:' 'No ' "Does Not Apply" and "Unknown". Hence, each feature is a decision
tree with a depth of one that has a single fundamental division. They are
divided in two sets, actions and consequences:

Actions:

thac_observe: The vulnerability can result in a user observing objects, data,
etc., in violation of expected policy.

thac_destroy: The vulnerability can result in a user destroying objects, data,
etc., in violation of expected policy.

thac_modify: The vulnerability can result in a user modifying objects, data,
etc., in violation of expected policy

thac_create: The vulnerability can result in a user creating objects in violation
of expected policy.

thac_exec: The vulnerability can result in a user executing a program in
violation of expected policy.

Consequences:

thac_cavail: The vulnerability can result in the change of availability of the
system

thac_disclose: The vulnerability can result in the disclosure of information in
violation of expected policy.

thac_misrep: The vulnerability can result in misrepresentation of information

thac_repudiate: The vulnerability can result in repudiation of information

thac_intergrity: The vulnerability can result in a change of integrity of the
system

thac_config: The vulnerability can result in the loss of confidentiality of
information

iv. System
This classifier is used to indicate the systems that are known (to us!) to have the
vulnerability. To date we have recorded vulnerabilities for the following
operating system.

Solaris->SUN Solaris
 SGIRIX -> SGI IRIX
SunOS-> SUN OS
DECOSF1-> Digital.OSF/1
DOS-> Microsoft DOS
NECUX-> NEC XX-UX
Windows 95->Microsoft Windows 95
HP-UX->Hewlett-Packard Unix
Windows NT->Microsoft Windows NT
AIX-> IBM's AIX
Windows WG->Microsoft Windows(pre-95)
OpenStep->OpenStep
Slackware->Linux Slackware
OSF->OSF
Redhat->Linux Redhat
Caldera->Caldera
Debian->Linux Debian
Goah->NEC's Goah
Mklinux->Linux Apple Distribution
Ultrix->Ultrix
OpenLinux->Linux Caldera distribution
DEC_UNIX->Digital Unix
OtherLinux->Unknown, unsupported or uncommon Linux
AUX->Apple's Unix
BSDI->BSDI Unix
DG->Data General
NovellUnix->Novel Unixware
unicos->Cray's UNICOS
NetBSD->NetBSD Unix
MacOS->Macitosh OS
FreeBSD->Free BSD Unix
Netware-> Novell Netware
Athena->MIT-distributed athena
OpenBSD->OpenBSD Unix
Cygnus->Cygnus Network security
VMS->DEC VMS
OpenVision->Open vision
NA->Does not apply

v. Vendors
SUN-> Sun Microsystems, Inc
Microsoft-> Microsoft
SGI ->Sillicon Graphics Inc
Netscape-> Netscape Corporation
BSDI-> Berkeley Software Design, Inc.
Slackware-> Walnut CreckCDROM
Redhat -> Redhat Software, Inc.
Debian -> Software in the Public Interest (SPI)
MkLinux -> Apple Computer
DGC -> Data General Corporation
FreeBSD -> FreeBSD, Inc
HP -> Hewlett-Packard Company
IBM ->IBM Corporation
SCO-> The Santa Cruz Operation, Inc
NeXT -> NeXE Software, Inc.
OpenGroup-> The Open Group
SantaCruz ->The Santa Cruz Operation (SCO)
Caldera-> Caldera
DEC -> Digital Equipment Corporation
Apple-> Apple Computer
OSF-> Open Software Foundation
CRAY -> Cray
NetBSD -> Ihe NetBSD Project
OpenBSD -> The OpenBSD Project
Novell-> Novell
NA -> Does not apply

vi. Type of OS

Feature Name: Operating System Type
Feature ID: os_type

Is the vulnerability operat-
ing system independent? OS Independent

Yes

No

START

Is the vulnerability
present only on some
(or all) Unix variants?

Is the vulnerability
present only on some

(or all) Microsoft Win-
dows NT variants?

Is the vulnerability
present only on some
(or all) DOS variants?

Is the vulnerability
present only on some
(or all) VMS variants?

Is the vulnerability
present on more than
one operating system?

Is the vulnerability
present only on some (or

all) MacOS variants?

Unix

Windows

DOS

VMS

Mac OS

Multiple OS

Other

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

vii. Application
This feature defines the application that has the vulnerability. This classifier is
relevant for those vulnerabilities that are present in user-level programs,
daemons, servers,. etc. that are not a part of the operating system itself. This
feature can take on many values and here we give a small subset as examples.

Netscape-> Netscape WWW Browser
HotJava-> SUN's HotJava WWW Browser
JDK appviewer -> Java Developer Kit's appler viewer
Ora_pbrow -> Oracle PowerBrowser
XMCD -> CD digital .audio player utility for X1 1/Motif
NIS -> Network Information. System
Apache -> Apache WWW httpd .
FrontPage-> Microsoft FrontPage
InternetExploer Microsoft Explorer
NetscapeNewsServer-> ,Netscape's News Server
Minicom -> Linux free telecom
NTHTTPServer -> HTTP Server included in Windows NT
rpcbind -> Universal addresses to RPC program number mapper
rlogin-> Remote login
stat-> File status
ftpd-> Internet File Transfer Protocol server (ftpd)
talkd -> Serverfortalk program (talkd)
ps -> Report process status ps
rmail-> Read mail program in Unix
lpr-> Unix lpr Send a job to the printer
ircd -> IRC Server
NCSAhttpd NCSA WWW httpd
pkgtool-> PKGTOOL Linux Software Management Utility
syediag-> HP System Diagnostics tool e majordomo
Majordomo-> mailer.
passwd-> Unix password change utility
binmail -> /uar/bin/mail on Unix
rdist-> Remote file distribution client
ppp-> Implementation of the Point to point protocol for TCP/IP
sperl -> SetUID Perl
xterm-> Terminal emulator for X
cxterm-> Chinese Terminal emulator for X
admintool-> Sun administration tool
inperson -> InPerson desktop video con ferencing package
lynx -> Lynx text web browser
swinstall-> HPUX software installation utility
glance-> HPUX Glance software
workman-> Workman CD digital audio player
lpd -> Line printer daemon
sendmail-> Unix program for sending email over the Internet

lmgrd -> FLEXlm license manager daemon
expreserve -> vi and ex file preservation utility
crontable->System clock daemon manager for users
ld. so -> runtime linker used by dynamically linked executables (a.out)
telnetd ->DARPA TELNET protocol sever
norton-> Norton Utilities . ''
fm_fls-> FrameMaker license server .
usrmgr -> NT user manager
voLd -> Solaris volume mounting daemon
 mstimeserv ->NT Time Server
kcms -> Kodak Color Management System
msaccess-> Microsoft Access
wuftpd ->Washington University ftpd,
msoffice -> Microsoft Office
rpcmountd -> rpc mount daemon
iind -> Internet News daemon
df -> Disk space reporting command .
ordist ->IRIX version of rdist
pset -> IRIX processor set modification utility
chkey -> RPC change key utility
cdplayer -> SGI CD digital audio player
fpkg2swpkg-> HP product spec. conv. utility
newgrp ->Program to create a new group
bash ->GNU Project's Bourne Again SHell
BIND -> Berjkeley Internet Name Domain
Elm->Elm Mall System
testcgi -> A script that return status of the cgi systems on http daemons

viii. Ease of exploit
This classifier was originally defined from a talk given by Tom Longstaff [Lon97]
and attempts to identify how easy (or how hard) it is to exploit the vulnerability.

simple -> Simple command
toolkit-> Toolkit available
expertise -> Expertise required
user -> Must convince a user to take an action
Administrator-> Must convince an administrator to take an action

ix. Access required
This classifier was originally defined from a talk given by Tom Longstaff [Lon97]
and define the kind of access that is required to exploit the vulnerability.

Does the exploitation of
the vulnerability require
that the user have a user
account in the system?

Featur e Name: Access Required
Featur e ID: access_required

Does the exploitation of
the vulnerability require
that the user use a remote
system using a common
service?

Remote Access

Does the exploitation
require an account in a
trusted system but not
one in the system
being exploited?

Trusted Sys-
tem

Physical Access

Yes

Yes

Yes

Yes

No

No

No

No

No

START

Yes

Does the exploitation of
the vulnerability require
that the user have physi-
cal access to the system?

User Account

Does the exploitation of
the vulnerability require
that the user have a privi-
leged account in the
system?

Pr ivileged Access

Other

x. Complexity of exploit
This feature attempts to identify the complexity of the exploitation of a
vulnerability, regardless of whether a script or toolkit exists for the exploitation
of the vulnerability.

1. The notion of a simple sequence of commands will, of course, vary from person
to person. We will consider a simple sequence of commands a linear sequence of
commands (i.e. no loops, gotos, etc.) of no more than a dozen commands. Also,
these dozen commands must be common commands supported by the operating
system, common applications and utilities. Commands that involve scripts and
applications that the exploiter must compile, install, etc., do not qualify.

2. Shell scripts, command interpreter source files and macros all qualify.
Programs that are implemented in a general purpose programming language
(including such languages as Perl) do not qualify.

3. Typically requires a script or application that tries several times and may
require slowing down the system.

4. Applications that the exploiter must compile, install, etc.

xi a. Aslam classification decision tree, part 1 of 2. The Aslam classification has
been expanded and a decision tree has been introduced to eliminate ambiguities
end resolve some conflicts.

xi b. Aslam classification decision tree, part 2 of 2.

xii. Environmental Category (envass) This feature attempts to identify the
environmental assumptions that were made by programmers.

Envass Possible Values
Item Value Item Description
nameinv Assumes that a name (i.e. a path) is strongly bounded to a specific system object
objinv Assumes the invariance of an object during the execution of program (i.e. the

program assumes that no other subject can change the object while program is
running)

objne A program assumes that an object does not exist at the time of execution (i.e. a
program assumes that name does not exist)

tempdel A program assumes that a temporary item it created cannot be deleted by another
subject while the program is running

memavail A program that assume sufficient memory for its execution will always exist
netdata A program assumes that data from a network service will always be reliable
envdata A program assumes that the data in environment variables is valid and bounded
userdata A program assumes that user provided input is valid and bounded
filedata A program assumes that the input from a file is valid and bounded
reassembly A program assumes that the reassembly of a data object form fragments will not

affect the essential properties of the original object
execpath A program assumes a specific execution path
objatt A program assumes that certain attributes of certain objects have predefined

values
perstore A program assumes that persistent store is immutable (i.e. assumes that a file it

writes cannot be modified by any other subject in between program runs)
dataexec A program assumes that the modification of program data (by external subject)

will not affect the semantics of the program
nameover A program assumes that, while creating a file, any existing file that has the same

name can be overwritten
falseconst A program falsely assumes that a constraint or property holds in the system
insufverif A program falsely assumes that a set of operations are sufficient for the

verification of the property of an object
namepurpose A program assumes that there is a strong binding between the name and purpose

of an object
reservedobject A program assumes that an object with a specific name will not be used by any

other entity in the system by virtue of its name alone
Other Other
NA Does not apply
? Unknown

xiii. System component category feature.
This feature attempts to identify the system component that contains the
vulnerability.

xiv. Nature_ object Possible Values

Nature_object Possible Values

Item Value Item Description
user_files User files in the system
system_ file System related or administrative files in the system
public_files Publicly available files in the system
directory Directories in the system
partition A file system partition
heap_data Data in the heap of running program
heap_code Executable code in the heap of running program
stack_data Data in the stack of a running program
static_data Data that is statically allocated in a running program
stack_return Return address of a function in the stack of a running program
stack_code Executable code in the stack of a running program
password Password or access token, can also be a pass-phrase
shell_command Shell command
system_program System program
user_program User installed or owned program
system_info Information regarding the system
outfiles Files outside a restricted space Describes files that should not be

environment, virtual environment, sandbox, etc
classloader A ClassLoader object in Java or any object responsible for loading

dynamic classes in any object oriented programming language
1ibrary System function or service library
a_net_connection Network connections to arbitrary hosts
web_pages WWW page
names User names, domain names, workgroup names, etc
pass_known Well-known nonce encrypted with user password
o_attributes System managed object attributes. Attributes the object itself (or

entities other than the system) does not manage
cpu CPU time
os Operating System
email Electronic Mail
netport Network Port
packets Network Packets
system_names Internal system names in control of the system
device A device in the system
addr_mapping Address mapping maintained by the system i.e. an ARP cache
command_prompt A command prompt presented to the user
other Other
NA Does not apply
? Unknown

xv. Nature_effect Possible Values

Nature_effect Possible Values

Item values Description
replaced Contents are completely replaced
changed Can be written or can be changed
read Can be read
append Information can be appended
created Can be created
displayed Displayed or revealed
change_owner Ownership can be changed
change_permission Permissions can be changed
predictable Is predictable or can be guessed
executed Can be executed in isolation of expected policy
loaded Can be dynamically loaded and linked
clear_text Is transmitted or stored in clear text
exhausted Is exhausted
crash Crashes
bound Can be bound to in violation of expected policy
exported Can be exported for mounting
mounted Is mounted or attached
locked Can be locked
debugged Can be debugged or attached to with a debugger
presented Presented to the user in a console or Terminal
other Other
NA Does not apply
? Unknown

xvi. Nature_method Possible Values

Nature_method Possible Values

Item Value Item Description
symlink Program follows symbolic link or late binding link without verifying that the

object being pointed to is correct
memcpy Program uses strcpy, sprintf, or bcopy to copy data of arbitrary length to a

stack buffer
config Configuration error
back_ticks Back ticks in parameter or input string
sepcial_chars Special characters in input string, including file completion characters, special

shell characters
dotdot Uses ".." to climb up a directory tree past allowable bounds
verify_fail Byte code or code verifier allows code that catches a security exception when

creating an object loader
mod_name Modifying compiled code to alter the name of objects
mod_env Modifying environment variables
NTML_auth NTML authentication process requires action
inherit_privs Program inherits unnecessary privileges
capability System provides inappropriate capability
hidden_mount System provides hidden system mount point
syscall_disclose System call discloses sensitive information
incorr_imp Incorrect environment (mistaken environmental assumption)
rel_paths Program refers to relative paths
incprot Program fails to implement the protection mechanisms correctly
proxy Program uses a trusted intermediary or proxy to bypass protection

mechanisms
coresymlink A program dumps a core file that follows symbolic links or late
infloop Program uses an infinite and tight loop that consumes resources
criticalsect Program fails to protect isolate a critical section
other Other
NA Does not apply
 Unknown

xvii. Nature_method_input Possible Values

Nature_method_input Possible Values

Item Value Item Description
env Environment variable
command User command line option
netdata Network data
store Persistent store
tempfile Temporary file
conffile Configuration file
datafile Data file
gecos System User information (Name, phone, number etc.)
parameter Parameter to a system call
libparameter Parameter to a library call
floppy Removeable media
other Other
NA Does not apply
? Unknown

	CERIAS Tech Report 2002.pdf
	Guangfeng Song, Salvador Mandujano, Pascal Meunier

