CERIAS Tech Report 2000-15

Protocols for Secure Remote Database
Access with Approximate Matching

Wenliang Du, Mikhail J. Atallah
Center for Education and Research in
Information Assurance and Security
Purdue University, West Lafayette, IN 47907

Protocols for Secure Remote Database Access with
Approximate Matching

Wenliang Du Mikhail J. Atallah
CERIAS CERIAS
Purdue University Purdue University
West Lafayette, IN 47907 West Lafayette, IN 47907
Email: duw@cerias.purdue.edu Email: mja@cs.purdue.edu
Tel: (765) 496-6765 Tel: (765) 494-6017
Abstract

Suppose that Bob has a databd3eand that Alice wants to perform a search quergn D (e.g.,
“is ¢ in D?"). Since Alice is concerned about her privacy, she does not want Bob to know the query
q or the response to the query. How could this be done? There are elegant cryptographic techniques
for solving this problem under various constraints (such as “Bob should know neitherthe answer
to the query” and “Alice should learn nothing aboui? other than the answer to the query”), while
optimizing various performance criteria (e.g., amount of communication).

We consider the version of this problem where the query is of the tygeafiproximatelyn D?” for
a number of different notions of “approximate”, some of which arise in image processing and template
matching, while others are of the string-edit type that arise in biological sequence comparisons. New
techniques are needed in this framewaork of approximate searching, because each notion of “approximate
equality” introduces its own set of difficulties; using encryption is more problematic in this framework
because the items that are approximately equal cease to be so after encryption or cryptographic hash-
ing. Practical protocols for solving such problems make possible new forms of e-commerce between
proprietary database owners and customers who seek to query the database, with privacy.

We first present four secure remote database access models that are used in the e-commerce, each of
which has different privacy requirement. We then present our solutions for achieving privacy in each of
these four models.

Keywords: Privacy, security, secure multi-party computation, pattern matching, approximate pattern
matching.

*Portions of this work were supported by Grant EIA-9903545 from the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assurance and Security.

1 Introduction

Consider the following real-life scenario: Alice thinks that she may have some genetic disease, so she wants
to investigate it further. She also knows that Bob has a database containing known DNA patterns about
various diseases. After Alice gets a sample of her DNA sequence, she sends it to Bob, who will then tell
Alice the diagnosis. However, if Alice is concerned about her privacy, the above process is not acceptable
because it does not prevent Bob from knowing Alice’s private information—both the query and the result.

This kind of situation, which is likely to arise as e-commerce develops, motivates the following general
problem formulation:

Secure Database Access (SDA) Problem: Alice has a striagd Bob has a database of strings
T = {t1,...,tn}; Alice wants to know the result of whether there exists a sttifig Bob’s
database that “matches?. The “match” could be an exact match or an approximate match.
How to design a protocol that can accomplish this task without revealing Alice’s setoet
Bob?

Because of its practical importance and also because not much work has been done for approximate
pattern matching in the SDA context, our work particularly focuses on approximate pattern matching.

The exact matching problem has been extensively considered in the literature [19, 6, 17, 16, 20, 22, 21,
13], even though it can theoretically be solved using the general techniques of secure multi-party computa-
tion [10]. The motivation for giving specialized solutions to it is that they are refiieientthan those that
follow from the above-mentioned general techniques. This is also our motivation in considering approx-
imate pattern matching even though it too is a special case of the general secure multi-party computation
problem. Unlike exact pattern matching that produces “yes” and “no” answers, approximate pattern match-
ing measures the difference between the two targets, and prodaceseto indicate how different the two
targets are. The metrics used to measure the difference usually are heuristic and are application-dependent.
For example, in image template matching [14, 38}, , (a; —b;)? and> ", |a; —b;| are used to measure the
difference between two sequenceeandb. In DNA sequence matching [15¢dit distancg2] makes more
sense than the above measuremesdd; distancaneasures the cost of transforming one given sequence to
another given sequence, and its special dasgest common subsequenseaised to measure how similar
two sequences are.

Solving approximate pattern matching problems within the SDA framework is quite a nontrivial task.
Consider thé_" | |a; — b;| metric as an example. The known PIR (private information retrieval) techniques
[19, 6, 17, 16, 20, 22, 21, 13] can be used by Alice to efficiently access each indiyidiidout revealing
to Bob anything about which (or even whichb) Alice accessed (more on this later), but doing this for each
individual b; and then calculatind";", |a; — b;| violates the requirement that Alice should know the total
scored_i; |a; — b;| without knowing anything other than that score., without learning anything about
the individualb; values. Using a general secure multi-party computation protocol typically does not lead to

an efficient solution. The goals of our research, and the results presented in this paper, are finding efficient
ways to do such approximate pattern matchings without disclosing private information.

The actual practice of remote database access does not all fit into the same model we described in the
above SDA formulation. For example, in some situations, Bob’s database could be proprietary whereas
in some others it could be public (in either case the protocol should reveal nothing to Bob about Alice’s
query). The “proprietary” nature of a database might make the solution more difficult because Alice should
not be able to know more information than the response to her query. There is also another practical frame-
work, within which Alice uses Bob to store a (suitable disguised) version of her private database (a form
of outsourcing) and whose solutions could be much different. Based on these various practical variants of
the problem, we have investigated four SDA models, and defined a class of SDA problems for each model
according to the metrics we use for approximate pattern matching. Of course the difficulties of the problems
are not the same for the different metrics, and so far we have solved a subset of those problems. A summary
of our results is listed below (the results are stated more precisely in Section 4, and the models are defined
in Section 3 — in the meantime see Figure 1 in that section for a summary of each model).

e For the Private Information Matching Model, we have a solution to the approximate pattern matching
based on th& " (a; — b;)? with O(n? *+ N) communication cost, where is the length of each
pattern andV is the size of the database.

e For the Private Information Matching Model, We also have a solution to the approximate pattern
matching based op;._; |a;—b;| metrics using a Monte Carlo technique; the solution gives an estimate
result, and it ha®)(n « W x N) communication cost, whei is a parameter that affects the accuracy
of the estimate.

e For the Private Information Matching Model, if we assume that the alphabet is known to the involved
parties and its size is finite, we have a solution to approximate pattern matching based on general
™, f(a; — b;) metrics, hence the solutions for the special cass/of |a; — b;|, 1 (a; — b;)?,
and>_; 6(ai, b;) (Whered(z,y) is 1if z = y and O otherwise). These solutions h&ven * n * V)
communication cost, where: is the number of the symbols in the alphabet. In many cases,
small. For instancep is four in DNA databases.

e Forthe Secure Storage Outsourcing Model, we have a solution to approximate pattern matching based
onthe>"" , (a; —b;)?> metrics. The solution is practical because it has @) communication cost,
andO(n) is optimal because that is how long the answer is.

e For the Secure Storage Outsourcing and Computation Model, we also have a solution to approximate
pattern matching based on th&" , (a; — b;)? metrics. This solution is also practical because of its
O(n?) communication cost.

Motivation

Why do we care about the privacy of a database query? In the example used earlier in this section, if a match
is found in the database, Bob immediately knows that Alice has such a disease; even worse, after receiving
Alice’s DNA sequence, Bob can derive much about Alice from the DNA, such as other health problems that
Alice might have. If Bob is not trustworthy, Bob could disclose the information about Alice to other parties,
and Alice might have difficulty getting employment, insurance, credit, etc. On the other hand, even if Alice
trusts Bob, and Bob has no intention of disclosing Alice’s private information, Bob might still prefer that
Alice’s query be kept private out of liability concerns: If Bob knows Alice’s DNA information, and that
information is accidentally disclosed (perhaps by a disgruntled employee of Bob'’s, or after a system break-
in), Bob might face an expensive lawsuit from Alice. From this perspective, a trusted Bob will actually
prefer not to know either Alice’s query or its response.

With the growth of the Internet, more and more e-commerce transactions like the above will take place.
There are already DNA pattern databases, public databases about diseases, patent databases, and in the future
we may see many more commercial databases and the related database access services, such as fingerprint
databases, signature databases, medical record databases, and many more. Privacy will be a major issue
in such e-commerce. Assuming the trustworthiness of the service providers, as is done today, is risky;
therefore protocols that can support remote access operations while protecting the client’'s privacy are of
growing importance.

One of the fundamental operations behind the queries described in the examples above is pattern match-
ing. Therefore, the basic problem that we face is how to conduct pattern matching operations at the server
side while the server has no knowledge of the client’s actual query (or the response to it). In some database
access situations, exact pattern matching is used, such as query by name, query by social security number,
etc. However, in many other situations, exact pattern matching is unrealistic. For instance, in fingerprint
matching, even if two fingerprints come from the same finger, they are unlikely to be exactly the same be-
cause there is some information loss in the process of deriving an electronic form (usually a complex data
structure of features) from a raw fingerprint image. Similarly in voice, face, and DNA matching; in these
and many other situations, exact matching is not expected and some form of approximate pattern matching
is more useful.

Background Information on Secure Multi-party Computation

The above problem is a special case of the general secure multi-party computation problem [28]. Generally
speaking, a multi-party computation problem deals with computing any probabilistic function on any input,
in a distributed network where each participant holds one of the inputs, ensuring independence of the inputs,
correctness of the computation, and that no more information is revealed to a participant in the computation
than can be computed from that participant’s input and output [12]. Other examples of such computations
include: elections over the Internet, electronic bidding, joint signatures, and joint decryption. The history

4

of the multi-party computation problem is extensive since it was introduced by Yao [28] and extended by
Goldreich, Micali, and Wigderson [23], and by many others: GoldWasser [12] predicts that “the field of
multi-party computations is today where public-key cryptography was ten years ago, namely an extremely
powerful tool and rich theory whose real-life usage is at this time only beginning but will become in the
future an integral part of our computing reality”.

Goldreich states in [10] that the general secure multi-party computation problem is solvable in theory.
However, Goldreich also points out that using the solutions derived by these general results for special cases
of multi-party computation, are impractical; special solutions should be developed for special cases for
efficiency reasons.

One of the well-known special cases of multi-party computation is the Private Information Retrieval
(PIR) problem: The problem consists of a client and server. The client needs to g#t tieof a binary
sequence from the server without letting the server knowi;ttiee server does not want the client to know
the binary sequence either. A solution for this problem is not difficult; however an efficient solution, in
particular a solution with minimal communication cost, is not easy. Studies [19, 6, 17, 16, 20, 22, 21, 13]
have shown that one can design a protocol to solve the PIR problem with much better communication
complexity than the theoretical solutions. Pattern matching is another such specific computation, and the
recent progress in the PIR problem motivated us to speculate that there exist solutions that are better than
the general theoretical one for this particular kind of secure multi-party computation.

Secure Multi-party Protocol v.s. Anonymous Communication Protocol

Anonymous communication protocols [24, 11] were designed to achieve somewhat related goals, so why
not use them? Anonymity techniques help to hide the identity of the information sender, rather than the
information being sent. For example, when people browse the web, they can use anonymous communication
protocols to keep their identities secret, but the web query usually is not secret because the web server has
to know the query in order to send a reply back. In situations where the identity of the information sender
needs to be protected, anonymous communication protocols are appropriate. However, there are situations
where anonymous communication protocols cannot replace secure multi-party computation protocols. First,
certain types of information intrinsically reveal the identity of someone related to the information (e.g., social
security number). Secondly, in some situations, it is the information itself that needs to be protected, not
the identity of the information sender. For instance, if Alice has an invention, she has to search if such an
invention is new before she files for a patent. When conducting the query, Alice may want to keep the query
private (perhaps to avoid part of her idea being stolen by people who have access to her query); she does
not care whether her identity is revealed. Thirdly, in certain situations, one has to be a registered member in
order to use the database access service; this makes hiding user’s identity difficult because the user has to
register and login first, which might already disclose her identity.

Furthermore, most of the known practical anonymous protocols, such as Crowds [24], Onion routing

[11] andAnonymi zer . comuse one or severalustedthird parties. In our secure multi-party computation
protocols, we do not use a trusted third party; even if a third party is used, we generally assume that the third
party is not trusted, and should learn nothing about either Alice’s query, or Bob’s data, or about the response
to the query.

Therefore anonymity does not totally solve our problems, and cannot replace secure multi-party com-
putation. Rather, by combining anonymity techniques with secure multi-party computation techniques, one
can achieve better overall privacy more efficiently.

2 Reated Work

As Goldwasser points out in [12], in the 80’s the focus of research was to show the most general result
possible, yielding multi-party protocol solutions for any probabilistic function. Much of the current work

is to focus orefficientandnon-interactivesolutions to special important problems such as joint-signatures,
joint-decryption, and secure and private database access.

Among various multi-party computation problems, the Private Information Retrieval (PIR) problem has
been widely studied,; it is also the problem most related to what we present in this paper (although here we
use none of the elegant techniques for PIR that are found in the literature for reasons we explained earlier
in this paper). The PIR problem consists of devising a protocol involving a user and a database server, each
having a secret input. The database’s secret input is calledhtiaestring an N-bit stringB = §b5 ... by.

The user’s secret input is an integdsetween 1 aneé.. The protocol should enable the user to le@ain a
communication-efficient way and at the same time hittem the database.

The trivial solution is having the database send an encryption of the entire Bttmthe user. However,
this solution is not efficient because of tN) communication complexity. Much work has been done
to reduce the communication complexity [19, 6, 17, 16, 20, 22, 21, 13]. Our work is motivated by this
framework, including its emphasis on reducing communication complexity.

Choret al. point out that a major drawback of all known PIR schemes is the assumption that the user
knows thephysical addressf the sought item [9]. In the current database query scenario, the user typically
holds a keyword and the database internally converts this keyword into a physical address. To solve this
problem, Choret al. propose a scheme to privately access data by keywords [9]. The difference between
the problem studied in Chor’s paper and the problems in our paper is that we extend the problem to cover
approximate pattern matching.

Songet al. propose a scheme to conduct searches on encrypted data [27]. The problem is that Alice
has a database, and she has to store the database in a server controlled by Bob; how could Alice query her
database without letting Bob know the contents of the database or the query? This problem is different from
the PIR problem because Alice now knows all the inputs in this problem, whereas in the PIR problem Alice
does not know Bob’s input. Here we primarily focus on extending the problem to also cover approximate

pattern matching.

There is much work on other types of secure multi-party computation problems, such as threshold cryp-
tography [8], private bidding [5] and secret-ballot elections [4]. Although they are different from our prob-
lems, we believe that the techniques they use are also useful in solving our problems.

Multi-party protocols use a rich body of tools and sub-protocols, some of which were developed for
particular applications, while others were developed for general cryptographic settings. These include zero-
knowledge proofs, probabilistic encryption, oblivious transfer, various distributed commitment schemes
[25], computing with shares of a secret [26], and instance hiding schemes [7, 1].

3 Framework

3.1 Modes

Remote database access has many variants. In some e-commerce models, Bob’s database is private while in
some other models, it is public. In the latter case, there is no requirement to keep the database secret from
Alice; however, the privacy of Alice’s query still needs to be preserved. In other e-commerce models, Bob
hosts Alice’s (encrypted/disguised) database while supporting queries from Alice and other customers, in
which case Bob should know neither the database nor the queries.

Bob’s .
Private Database Public Databasg
query query
Bob Bob
reply reply
(a) PIM Model (b) PIMPD Model
Alice’s _ Alice’s
Private Database) Private Databas
query outsourcing
I Bob . Bob
reply 0 K
L% %
eg_Carl

(c) SSO Model

From the various ways that remote database access is conducted, we distinguish four different e-commerce

Figure 1: Models

models, all of which require customers’ privacy:

e PIM: Private Information Matching Model (Figure 1.a)

(d) SSCO Model

e PIMPD: Private Information Matching from Public Database Model (Figure 1.b).

e SSO: Secure Storage Outsourcing Model (Figure 1.c).

e SSCO: Secure Storage and Computing Outsourcing Model (Figure 1.d).

For the sake of convenience, we will uséatch() to represent the pattern matching function, which
includes both exact pattern matching and approximate pattern matching.

Private | nformation Matching Problem (PIM)

Alice has a stringe, and Bob has a database of strifgs= {4, ..., tx}; Alice wants to know the result of
Match(z,T). Because of the privacy concern, Alice does not want Bob to know the queryhe result;

Bob does not want Alice to know any string in the database except for what can be derived from the reply.
Furthermore, Bob wants to make money from providing such a service, therefore Alice should not be able
to conduct the querying by herself; in other words, every time Alice wants to perform such a query, she has
to contact Bob, otherwise she cannot get the correct answer.

Private Information Matching from Public Database Problem (PIMPD)

Bob has a database of stringjs= {¢, ..., ¢y}, whose contents are public knowledge. Alice has a query
and she wants to know the resultfatch(z, T'). However, because of the privacy concern, Alice does not
want to disclose her quenyto Bob.

This problem is different from the PIM problem: in the PIM problem, Bob does not allow Alice to know
any information about the database except for what can be derived from the reply. In the PIMPD problem,
since the database contains only public knowledge, there is no need to prevent Bob from letting Alice know
more about the contents of the database than the strict answer to her query (although Bob’s doing so may
result in unnecessary communication).

Secure Storage Outsourcing Problem (SSO)

Alice has a database of strin@s = {¢#,...,tx}, but she does not have enough storage for the large
database, so she outsources her database (suitably disguised—more on this later) to Bob, who provides
enough storage for Alice. Furthermore, from time to time, Alice needs to query her database and retrieves
the information that matches her query, i.e., Alice wants to kibwtch(x, T') for her queryz. For the sake

of privacy, Alice wants to keep the contents of both the database and the query secret from Bob.

Secure Storage and Computing Outsourcing Problem (SSCO)

The SSCO problem is an extension of the SSO problem. While the database is exclusively queried by Alice
only in the SSO problem, in the SSCO model the database will also be queried by other clients of Alice.
More specifically, in the SSCO model, Alice outsources her database to Bob, and she wants the database to
be available to anyone who is willing to pay her for the database access service. When a client accesses the
database, neither Alice nor Bob should know the contents of the query. Moreover, Alice wants to charge the

8

clients for each query they have submitted, so the client should not be able to get the correct query result if
Alice is not aware of the query’s existence.

Since Bob can pretend to be a client, the solutions of the SSCO problem should be secure even if Bob
can collude against Alice with any client. However, the SSO problem does not have such a concern because
the only client is Alice herself.

3.2 Formalized Problems

For each model, there is a family of problems. We will use the following notations to represents each specific
problem:

e M/Exact: Exact Pattern Matching problem in modél
e M/Approx: Approximate Pattern Matching problem in modél
— M/Approx/f: use}_;_, f(ax, br) metrics to measure the distance between two strings, where

f is a general function.

— M/Approx/#: usey_;_, d(ax, br) metrics to measure the distance between two strings, where
is the Kronecker symbobli(z,y) = 0 if and only ifx = y and 1 otherwise.

— M/Approx/Abs: us&_}_, |ax — bi| metrics to measure the distance between two strings.
— M/Approx/Squ: us&_7_, (ax — bx)? metrics to measure the distance between two strings.
— M/Approx/Edit:

x M /Approx/Edit/String: use the string editing criterion to measure the distance between two
strings.

x M/Approx/Edit/Tree: use the tree editing criterion to measure the distance between two
trees.

The M/Exact problem has been studied extensively in certain model, such as PIM and SSO, but the
M/Approx problem has not. Our results deal mostly with 3déApprox problem.

4 Our Reaults

4.1 PIM/Approx

Except for the research on the general secure multi-party computation problem, this specific problem has
not been studied in the literature. Unless otherwise specified, we assume alphabet used in the following
solution to be predefined and its size to be finite. This assumption is quite reasonable in many situations;
for instance, DNA sequences use a fixed alphabet of four symbols. Under this assumption, we can solve the

PIM/Approx/f problem. However, because the way to calcutadi distancecannot be represented in the
formY_p_, f(ax, bx), the PIM/Approx/Edit problem is not a special case of the PIM/Appfgtbblem. We

also have a solution for PIM/Approx/Edit/String problem, but because of its complexity and space limitation,
we will leave the solution to the journal version of this paper.

In some other situations, the above finite alphabet assumption does not apply. For instance, fingerprint,
image and voice patterns use real numbers instead of characters from a known finite alphabet. The above-
mentioned solution for the PIM/Approfg/problem cannot be used anymore, however by exploiting the
mathematical property of’"_, (a; —b;)?, we have come up with a solution for the PIM/Approx/Squ problem
for infinite alphabet after introducing amtrustedthird party who does not know the inputs from either of
the two parties and learns nothing about them (or about the query, or the answer to it). We also have a
solution to the PIM/Approx/Abs problem using a Monte Carlo technique. All of these are given below.

4.1.1 PIM/Approx/Squ Protocol

Suppose that Bob has a databd@se {#, ..., tx}, and assume the length of each element i&lice wants

to know thet; € T' that most closely matches a query= z;...z, based on the PIM/Approx/Squ metrics.
The requirement is that Bob should not knavor the result, and Alice should not be able to learn more
information than the reply from Bob.

We propose a protocol to compute the matching score using a untrusted third party, Ursula. Our assump-
tion here is that Ursula cannot conspire with either Alice or Bob. However, the third party is not considered
as trusted; therefore, Ursula should not be able to deduce eite?’, or the final matching score This
protocol works for both finite and infinite alphabet.

Let¥ = (—2x4,..., —2z,,1, R4,1), whereR 4 is a random number generated by Alice; for egch
Yido-Yins 1802 = (Y1, o0 Yimy Dohe1 yik — R;, 1, R;), whereR 4 and R; are random numbers. Observe
that:

Since(Y"}—; z2 — Ra) is a constant, we can use z’ instead ofs_}_; (z. — y;x)? to find the closest
match. After we get the closest match, Alice can calculate the actual score because she krgifis both
andRy4.

Protocol

1. Alice generates a random numker, and constructs the vect@r= (—2x1, ..., —2x,,1, R4, 1).

2. Alice generates afn + 3) x (n + 3) matrix M, where

10

(0

whereR is a matrix of sizgn + 2) x (n + 3), each element of which is a random number.

. Alice generates a random invertible matéXof size (n + 3) x (n + 3). We will use vectorg; to
represents theth row of Q1.

. Alice sends the result @ = M to to Bob.
. Alice sendsy; to Ursula.

. For eacht; € T, repeat the next two sub-steps, in whigh= y; 1...4; .

(a) Bob constructs; = (yi1, .-, Yin: >k=1 Y; — Ri, 1, Ri), and calculate$Q M)z, then sends
the result to Ursula.
(b) Ursula calculates; = ¢ - (QMzl) = 7 - 2T

. Ursula computescore’ = mind_; v;, and sends the resuitore to Alice.

. Alice computesicore = score’ + 3_}_, =7 — R4, which is the closest match betweernd the any
tieT.

The purpose ofz4 is to prevent Ursula from knowing the actual score, and the purpogeanid R is

to disguise the query. Alice does not need to putin the first row of M, instead, she can put it in any row

of M, and then sends to Ursula the corresponding ro@df, only Alice knows which row ofM/ is vector

x. The communication cost of the above protocaDig? x N).

4.1.2 PIM/Approx/Abs Protocol

First, we will present a Monte Carlo technique for Alice and Bob to calcylgte- y|, and then use it as

a building block to comput® }_, |zx — yx|. The protocol involves an untrusted third party, Ursula, who

learns nothing excepty — yx| + Ry, whereRy, is a random number unknown to her. The protocol works

for both finite and infinite alphabet. Assume tat z;, < U and0 < y; < U for some numbet/. The

protocol for|z, — y| is (in what followsW is a parameter that affects the accuracy of the estimate, and

counter = 0 initially):

1. Alice generates a random numb@y, and then generatd® — R;, random numbers uniformly over

(0..U].

11

2. Alice randomly replaces half of the88 — R, numbers with their negative values.

3. Alice insertsRy, zeroes into random positions of thdde— R, numbers, resulting in a sequeng®f
W numbers.

4. Alice then sends$ to Bob.

5. For each numbes from S, if s = 0, Alice sends 1 to Ursula; i§ > 0, Alice sends 1 to Ursula if
|s| > zx, sends O otherwise; ¥ < 0, Alice sends 0 to Ursula ifs| > zx, sends 1 otherwise.

6. For each numbes from S, if s = 0, Bob sends 0 to Ursula; § > 0, Bob sends 1 to Ursula if
|s| > vy, sends O otherwise; ¥ < 0, Bob sends 0 to Ursula j§| > v, sends 1 otherwise.

7. Ursula increasesunter by 1 if the values she receives from Alice and Bob are different.

(o]

. Ursula computescore = counter x % which is shown earlier to be an unbiased estimati;of-
Y|+ Ry * .

Because of?;, Ursula does not know the actual distance betwgeandy;, and because of the neg-
ative numbers among tho$& random numbers, Ursula can not figure out whethier y; or z; < y.
Therefore Ursula knows nothing abagtandyy.

Now, let us see how to use the above protocol to compijte, |z — v x|, wherex = z;...z,, and

ti = Yi1---Yin:
1. Alice generates a random number

2. Foreach; € T, suppos€; = y; 1...y;», and repeat the next three sub-steps:

(8) counter = 0.

(b) For eacht = 1,...,n, Alice, Bob and Ursula use the above protocol to compute- y; x|.
The random numberB,; i, ..., R; , used in the above protocol are generated by Alice, such that
2221 Ri,k =R.

(c) Ursula computescore; = counter * % which is an unbiased estimate of_ |z — y; x| +

U - U
dk=1 R; j; * w ket |TE — yi,k| +R * W
3. Ursula computescore’ = minlY ; score;, and sendscore’ to Alice.

4. Alice computescore = score’ — R * % and gets the closest match betweaesnd anyi; € T'.

The communication complexity ©(n * W x N). The analysis of the variance will given in the full
version of this paper.

12

4.1.3 PIM/Approx/f protocol

If the alphabet is predefined and its size is finite, we can solve a general problem—comfuting).
However, we cannot directly use this protoadimes to comput® ;_; f(z, yx) because that would reveal
each individual result of (z, yx). We will present the protocol for computingfz, y) here, and then in
the following sub-section, we will discuss how to use it as a building block to compfute f (zx, yx)
without revealing any individuaf (zx, yx)-

Suppose Alice has an input; Bob has an inpugy; Alice wants to know the result of(xy, v) without
revealingz, and the result to Bob, and Bob does not want to reveaj.ite Alice. If Alice can derivey
from f(z, yx), that is beyond the scope of this problem. We present a solution to this problem. Later we
will use this solution as a building block to construct solutions to other problems.

f-function Protocol

We assume the encryption methods used below are commutative.

1. Bob computed(«, yi) for eacha; € X, whereX is the finite (known) alphabet. Let be the size
of X.

2. Bob chooses a secret kéy computesEy (f(«y, yx)) for eacha; € X, and sends to Alice the:
results.

3. Alice chooses one fromu (f(a;,yx)), i = 1...m, such thaty; = x,. This can be done because
Bob sent then encrypted results in order.

4. Alice chooses a secret kéy computesy (Ex (f (zk, yx))), and sends it back to Bob.

5. Because of the commutative propertiegipfandEy, Ey (Ex(f (zr, yx))) is equivalent tai (Eg (f (zk, yx)))s
which could be decrypted tBy/ (f (zx, yx)) by Bob. Bob sends the resul (f (zx, yx)) to Alice.

6. Alice getsf(xy, yx) by decryptingEy: (f(x, yk))-

The technigue used above is similar to the standard oblivious transfer protocol; it protects the privacy of
the inputs from both parties without introducing a third-party. The communication c68tig, wherem
is the size of the alphabet.

PIM/Approx/f Protacol

First, let us see how to securely compdté_; f(zr,yx). As we discussed above, we cannot run the
abovef-function protocoln times to ged_;_; f(z,yr). In the following protocol, we will use a disguise
technique to hide each individual result ffz, y).

13

For eacht; = y; 1...yin, and for eactk = 1,...,n, let f; x(zk, yix) = f(k, Yik) + Rig, WhereR; ; is
a random number, the following protocol shows how A and B calcOigte, f(zx — yik):

1. Bob generates a random numlbizthen sends? to Alice.

2. Foreacht; = y; 1, ..., yin, repeat the next five sub-steps:

(a) Bob constructs; i (z, yik) = f(zk,vik) + Rip for k = 1,...,n, whereR; , ..., R; , aren
random numbers.

(b) Alice and Bob use thg-function protocol to computg (z, y; 1), for eachk = 1,..., n.
(c) Alice sendsy_}_; fir(zk, yix) to Ursula.
(d) Bobsend$”;_, R, — R to Ursula.

(e) Ursula computescore; =Y i fik(Tr, vik)— (X1 Rix — R) = > p—1 f(zk, yir) + R.
3. Ursula computescore’ = minlY_; score;, and sendscore’ to Alice.

4. Alice computescore = score’ — R, thus getting the actual distance betweeand the closest in
the databasé'.

Although Alice knows each individuaf; ;. (xx, y; 1), she does not know the actual valuefdf, v;)
because ofz; ;.. Similarly, because oR, Ursula does not know the actual score of the closest match. The
communication cost of the protocol@¥(m * n x V), wherem is the size of the alphabet,is the length of
each pattern, and/ is the size of the database. In many casess quite small. For instancey is four in
DNA databases.

Becausézy — yi|, (zx —yx)? andd(zy, i) functions are special cases oz, 1), PIM/Approx/(Abs,
Squ,d) problems can all be solved using the above protocol.

4.2 PIMPD/Approx

The only difference between the PIM model and the PIMPD model is that, in the latter, Bob does not need
to keep the database secret from Alice. Therefore, All solutions in the PIM model can be applied to the
PIMPD model as well. Whether the “public” feature of the database can result in more efficient solutions is
an interesting question. Although we do not yet have an answer to it, we observed the following:

Theorem 1. There is no secure two-party non-interactive solution for the PIMPD/Approx problem.

Proof. A two-party non-interactive protocol means Bob, by himself, is able to find the item in the database
that has minimal distance from the query.

Assume there is a two-party non-interactive protadolhich solves any of the PIMPD/Approx prob-
lems, in another words, given an encrypted/disguised fefof a queryg, and the databask that Bob

14

knows, Bob can find the item in the database that has minimal distance;fasrfollows. We used(T', ¢)
to represent the algorithm on inpilitandd .

Since Bob can use any database he wants, he can use a database lKe=tfiaxxxxxx”, “DxXxxxxx”,
.y “ZXXXXXX"}, supposing that the alphabet is a set from 'a’ to 'z’. After applyihd@’, ¢'), Bob will get
one that has the minimal distance frgmFor instance, if “mxxxxxx” is the result, Bob knows that 'm’ is the
first character iny. SinceA is a non-interactive protocol, Bob can reuse it on another database constructed
for the purpose of exposing the second charactet e can keep doing this and figure out the rest of the
characters .

Therefore, if such a protocol existed, the queryould not be kept secret from Bob. O

The theorem does not rule out the existence of an efficient interactive protocol or a multi-party protocol.

4.3 SSO/Approx

In this model, Bob is a service provider who provides storage and database query services to Alice. Accord-
ing to Alice’s privacy requirement, Bob should know nothing about the database that he stores for Alice, nor
should he know the query. So Bob has to conduct a database query based on the encrypted or disguised data
of Alice.

The requirement that Bob should not know the query result, as in the PIM and PIMPD problem, is not
needed anymore in the SSO problem. The reason is that Bob does not know the contents of the database, he
does not even know what the database is for, so knowing whether Alice’s query is in the database does not
disclose any secret information to Bob.

Intuitively, it can look like that the SSO/Approx problem might be more difficult than the PIM/Approx
problem because Bob at least knows the contents of the database in the PIM/Approx problem whereas he
knows nothing about the database in the SSO/Approx problem. But knowing the contents of the database
has a disadvantage, in that Bob cannot know an intermediate result because he knows one of the inputs (the
database); if he also knows an intermediate result, he might be able to figure out the other input (query) of
the computation. However, in the SSO/Approx problem, Bob knows nothing about the database, so it is safe
for him to know intermediate results without exposing the query information.

Whether Bob can know intermediate results is a critical issue to reduce the communication complexity.

If he knows intermediate results to some extent, he can conduct the comparison operation to find the minimal
or maximal score; otherwise, he has to turn to Alice in order to find the minimal or maximal score, which
results in high communication cost in the PIM problem.

The SSO/Approx problem is similar to secure outsourcing of scientific computations problems studied
by Atallah et al. [3]. The difference is that in secure outsourcing problems, inputs are provided by Alice
every time a computation is conducted in Bob’s side; therefore, Alice can encrypt/disguise the inputs differ-
ently in different rounds of the computation. However, in the SSO problem, one of the inputs (the database)

15

is encrypted/disguised only once, and this same input is used in all rounds of computations; this makes the
problem more difficult.

So far, we have a solution only for SSO/Approx/Squ problem. The solution works for both infinite and
finite alphabet.

4.3.1 SSO/Approx/Squ Protocol

Suppose that Alice wants to outsource her dataliase {#,...,tx} to Bob, and wants to know if query
stringz = ...z, matches any patterpin the databas#'.

The straightforward solution would be to let Bob send the whole database back to Alice, and let Alice
conduct the query by herself. Although this solution satisfies the privacy requirement, much better com-
munication complexity can be achieved. Another intuitive question would be whether Bob can conduct the
matching independently after Alice sends him the relevant information about the query. If the answer is
true, Bob should be able to find the itgpthat has the closest match to the queryin another words, if
ti = y1...yn @ndscore; = S-F_, (7, — yx)?, then Bob should be able to find the minimum valugafre;.
However, because of the privacy requirement, Bob is not allowed to know the actual .queoy is he
allowed to know the content of the database, so how does he compute the distancbetweenz and
each of the elemertt in the database?

The idea behind our solution is based on the factihat = (ZQ ') - (QzT), whereQ is an invertible
matrix. Alice can store)z” instead ofz” at Bob's site, and keepg secret from Bob. She will seng)—!
to Bob each time she wants to send a queryherefore Bob can computé- 2 without even knowingt
andz. If we can user - z7 to represent th& }'_, (z;, — y;)?, we can make it possible for Bob to conduct
the approximate pattern matching.

For eacht; = y;1...yin in the databas@’, lett; = (X3_; yZ, + R — Ri,Yi, - Vi, 1, Ri), and let
#=(1,-2z1, ..., —2z,, R4, 1), whereR, R, andR; are random numbers. We will haget! = S"7_, yfk
—2% " apyix +R+ Ra, and thereforecore; = S0 (v —yix)? =217 +(X7_; 27— R— Ra). Since
(XF_1 72 — R — R,) is a constant, it does not affect the final result if we only want to findttiieat
produces the minimuracore;. Therefore, Bob can usé- EZT to compute the closest match.

Before outsourcing the database to Bob, Alice randomly chooses a &ecret) x (n + 3) invertible
matrix Q, and computes; = Q! , then send§” = {7, ..., Zx } to Bob.

Protocol

1. For any query stringg = x;...x,, Alice generates a random numbRj;, and constructs a vector
= (1,—2xy,...,—21,, R, 1), then sendgQ ' to Bob.

2. Bob computescore; = 7 - zI', fori = 1,..., N.

3. Bob computesin ; score!, and gets the corresponding

16

4. Bob returng; to Alice.

5. Alice computes)~'z; and gets;, which is the closest match of her query.

Because Alice and Bob are involved in only one round of communication, the communication cost is
O(n), which is optimal because that is how long the answer is.

Notice that we have introduced random numb&tsR,, R; for : = 1...N. The purpose oRR is to
prevent Bob from knowing the actual distance betweesind the items in the database; the purpose of
R4 is to prevent Bob from knowing the relationship between two different queries; the purpésis ob
prevent Bob from knowing the relationship among items in the database. Wikhdwto similar items in
the databas& would still be similar to each other in the disguised datal¥sadding a different random
number to each different item will make this similarity disappear.

4.4 SSCO/Approx

This model poses more challenges than the SSO model becase Bob could now collude against Alice with
a client, or he can even become a client. Therefore, one of the threats would be whether Bob is able to
compromise the privacy of the database by conducting a small number of queries and deriving the way the
database is encrypted or disguised. A secure protocol should resist this type of active attack. We have an
solution for the SSCO/Approx/Squ problem that works for both infinite and finite alphabet.

4.4.1 SSCO/Approx/Squ protocol

One of the difference between the SSCO/Approx problem and the SSO/Approx problem is who sends the
query. In the SSO/Approx/Squ protocol, Alice transforms the quety a vectorZ@~', and sends the
vector to Bob; in the SSCO/Approx/Squ protocol, the client Carl will send the query. Because Carl does
not know @, he cannot constructQ ' by himself. If Carl can get the result afQ—! securely, namely
without disclosingz to Alice and without knowing of course, we will have a solution. Becauge' =
(T, ...,qL), computingZQ ! securely is basically a task of computiig ¢ for k = 1..m, which can be
solved using the same technique as that used in solving PIM/Approx/Squ problem.

Therefore, by modifying step 2 of the SSO/Approx/Squ protocol slightly, and also by using a form of
“Rq * (score+ R 4)”, instead of the form of écore + R4” as is used in SSO/Approx/Squ protocol, we have
a SSCO/Approx/Squ protocol as the following:

Let T = {ti,...,tn} be the database Alice wants to outsource to Bob, and assume the length of
each element is. Alice generatesV random numbersz;, ..., Ry. For each; = y; 1,...,Yin, leti; =
(Che1 2+ R—Riyyin, - Yin, 1,1, Ri); letz; = Qt, whereQ is arandomly generatefeh+4) x (n.+4)
matrix.

In what follows, we assume that Alice outsourced the database{z, ..., Z } to Bob.

17

Protocol

1. Whenever a client Carl wants to to conduct a search on quetyz ...xz,, he generates a random
numberRc.

2. Alice generates random numbdtg andR,,.

3. Carl and Alice jointly compute = R,7Q~!, wherez = (1,—2zy,...,—2z,, Rc, Ra,1). The
computation does not reveal Alice’s sectgt R4 or R, to Carl, nor does it reveal Carl’s private
queryz or R¢ to Alice.

4. Carl then sends the vect@to Bob.

5. Bob computescore; = ¢z = Ro (X}, Yk — 22 k-1 TkYik + Ro + Ra)

6. Bob returns to Alicescord = minlY , score;.

7. Alice computesicore” = %Ze' —Ra=>}_ yfk — 23 k=1 Try;k + Rc and sends it to Carl.

8. Carl computescore = score” + Y 1_; 2 — R¢ and gets the final score.

Because ok, Alice cannot figure out the actual score for this query, and becauBg afdR,,, Carl
cannot figure out the actual score between his query and other items in the database (except for the matched
one) even if Carl can collude with Bob. The communication cost of the protocd(si5), most of which is
contributed by the computation &,ZQ " in step 3.

5 Conclusion and Future Work

We have developed four models for secure remote database access, and presented a class of problems and
solutions for these models. For some problems, such as SSO/Approx/Squ and SSCO/Approx/Squ problems,
our solutions are practical, and they only né&gh) andO(7) communication cost, respectively; while for
PIM/Approx and PIMPD/Approx problems, our results are still at the theoretical stage because of their high
communication cost. Improving the communication cost for those solutions is one avenue for future work;
another avenue is the non-sequential pattern matching: the pattern matching problems that we have dis-
cussed only involve patterns of simple sequential structure; in many applications, patterns have a branching
structure, such as a tree or a DAG. TheApprox/Edit/Tree problem in our model is one of the examples.
Developing a secure protocol to deal with this type of query is a challenging problem.

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation: a protocol based on hiding information from an oracle”.
Journal of Cryptology2:1-12, 1990.

18

[2] A. Apostolico and Z. Galil, editorsPattern Matching AlgorithmsOxford University Press, 1997.

(3]

M. Atallah and J. Rice. Secure outsourcing of scientific computations. Technical Report COAST TR 98-15,
Department of Computer Science, Purdue University, 1998.

[4] J.Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of voterscdedings

[5]

[6]

[7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

of the fifth annual ACM symposium on Principles of distributed compupiages 5262, Calgary, Alta, Canada,
August 11 - 13 1986.

C. Cachin. Efficient private bidding and auctions with an oblivious third partyroteedings of the 6th ACM
conference on Computer and communications segyritges 120-127, Singapore, November 1-4 1999.

B. Chor and N. Gilboa. Computationally private information retrieval (extended abstraétjoteedings of the
twenty-ninth annual ACM symposium on Theory of compuEh§aso, TX USA, May 4-6 1997.

M. Abadi, J. Feigenbaum and J. Kilian. On hiding information from an oraldernal of Computer and System
Sciences39:21-50, 1989.

P. Gemmell. An introduction to threshold cryptographyQryptoBytesvolume 2. RSA Laboratories, 1997.

B. Chor, N. Gilboa and M. Naor. Private information retrieval by keywords. Technical Report TR CS0917,
Department of Computer Science, Technion, 1997.

O. Goldreich. Secure multi-party computation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/pulitenl/foc.html, 1998.

P. F. Syverson, D. M. Goldschlag and M. G. Reed. Anonymous connections and onion rouffngcdedings
of 1997 IEEE Symposium on Security and Privad@gkland, California, USA, May 5-7 1997.

S. Goldwasser. Multi-party computations: Past and preserferdoeedings of the sixteenth annual ACM sym-
posium on Principles of distributed computjri@anta Barbara, CA USA, August 21-24 1997.

Y. Gertner, S. Goldwasser and T. Malkin. A random server model for private information retriev@&ndin
International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM '98)
1998.

R. Gonzalezi and R. Wood®figital Image ProcessingAddison-Wesley, Reading, MA, 1992.

D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Comutational. Bialwgy
bridge University Press, 1997.

G. Di-Crescenzo, Y. Ishai and R. Ostrovsky. Universal service-providers for database private information re-
trieval. InProceedings of the 17th Annual ACM Symposium on Principles of Distributed Com&eiotgmber
211998.

Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private information retrieval (ex-
tended abstract). IRroceedings of the thirty-first annual ACM symposium on Theory of comptilagta, GA
USA, May 1-4 1999.

A. Jain. Fundamentals of Digital Image Processirgrentice Hall, Englewood Cliffs, NJ, 1989.

B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information retrievaPraceedings of IEEE
Symposium on Foundations of Computer Sciehtibvaukee, Wl USA, October 23-25 1995.

E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information
retrieval. InProceedings of the 38th annual IEEE computer society conference on Foundation of Computer
ScienceMiami Beach, Florida USA, October 20-22 1997.

Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in private information retrieval
schemes. IrProceedings of the thirtieth annual ACM symposium on Theory of compaitas, TX USA,
May 24-26 1998.

19

[22] C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval with polylogarithmic com-
munication. Advances in Cryptology: EUROCRYPT '99, Lecture Notes in Computer SciEb@e2:402—-414,
1999.

[23] O. Goldreich, S. Micali and A. Wigderson. How to play any mental gamePréceedings of the 19th annual
ACM symposium on Theory of computipgges 218-229, 1987.

[24] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transactid@M Transactions on Information and
System SecurityL(1):Pages 6692, 1998.

[25] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code.inlGhn Wiley & Sons, Inc.,
1996.

[26] A. Shamir. How to share a secré&ommunication of the ACM2(11):612—-613, 1979.

[27] D. Song, D. Wagner and A. Perrig. Practical techniques for searches on encrypted &ateekdings of 2000
IEEE Symposium on Security and Priva©akland, California, USA, May 14-17 2000.

[28] A. Yao. Protocols for secure computations Proceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Sciencd982.

20

	CERIAS Tech Report 2002.pdf
	Wenliang Du, Mikhail J. Atallah

