
FFT-ECM by Division Polynomials for Factoring
Zhihong Li & Samuel S. Wagstaff, Jr.

Introduction
 Factoring large numbers is very useful in cryptography. One can break certain ciphers, such as the RSA cryptosystem, if one can factor large numbers.
In this poster we develop a new integer factoring algorithm similar to the ECM(elliptic curve method). The difference is that this algorithm uses division
polynomials and a FFT(fast Fourier transform) to compute multiples of many points simultaneously. The ordinary ECM has little chance of factoring an RSA
public key and breaking the cipher. This algorithm has a much greater chance of factoring a number of the size of RSA public keys currently used.

Review of Elliptic Curves and the ordinary ECM:

 An elliptic curve is the graph of an equation , where x,y,a,b are real numbers, rational

numbers or integers modulo m>1. The set also contains a point at infinity, denoted . The

point is not a point on the graph of . It is the identity of the elliptic curve group. If P=(x,y) lies on

the graph of , we define –P=(x,-y). Given two points P and Q, on the graph but not on the same

vertical line, define P+Q=-R, where R is the third point on the straight line through P and Q. If the

tangent line through P is vertical, then we define . We can prove that an elliptic curve, with group

operation defined above, is a group.

 In 1985, H.W.Lenstra,Jr. invented an ingenious new factoring algorithm that uses elliptic curves. It

performs a calculation mP, where m is the product of all primes less than some bound B raised to some

suitable power. One then computes mP and hopes that it will equal the identity of modulo p, which

is a prime factor of the integer we need to factor, but will not equal the identity of modulo n, which

is the integer we need to factor.

The FFT-ECM by Division Polynomials:

 We create a new, much faster ECM using division polynomials and fast Fourier transforms. First of

all, let’s define division polynomials.

Def: (of Division Polynomials)

Define division polynomials inductively as follows:

Further define

Prop:

Suppose E is an elliptic curve given by with and , then the multiple of P is given
by

The algorithm relies on the following observations:

1. Pick a random pair of integers x, y, then for any chosen a, let . This yields univariate

polynomials in the variable a. I proved that the degree of

2. The ECM finds the prime factor p of n when computing [B]P for , if and only if

for some .

3. One may evaluate a polynomial at all terms of a geometric progression by using discrete Fourier

transforms to compute the convolution of two polynomials, and this may be done swiftly by FFT. In fact,

such an FFT takes only arithmetic steps without division.

Sketch of the Algorithm:

To find a prime factor p of n, set B (I’m working on finding suitable B by testing the algorithm). Pick ,

compute and check that is non-trivial. If the gcd is non-trivial, then we are done. If

the gcd is n then partition the product into subproducts and compute individual gcd’s. If the gcd is 1,

then we should pick up another x,y and B. In this algorithm, we try curves in a time.

The Algorithm for Evaluation of Polynomial on Geometric Progression:

 We want to evaluation the polynomial at values ,T is a constant (in the

algorithm here, T=2). We transform the sums according to

Where . By this transform, we can evaluate the polynomial by calculate the convolution of

two vectors.

 Here is the algorithm.

Input: An integer T and coefficients of a polynomial x(t). (We assume T has an inverse in the

arithmetic domain.)

Output: The values for .

Choose with least c such that .

For (j=0 to d-1) {

 }

Zero-pad to have length C.

Let .

Perform the length-C cyclic convolution by FFTs.

Return .

 The convolution in the penultimate line of the algorithm may be computed with discrete Fourier

Transforms as

Where * is pointwise multiplication of vectors. The DFT’s are performed efficiently by FFT’s.

Significance of the method:

 This new factoring method we are developing will be able to find much larger prime factors of large

Integers than the ordinary ECM can. The ordinary ECM often finds 40-digit factors and sometimes finds

50-digit factors of large integers. Its record discovery is a 57-digit prime factor. A heuristic argument

similar to that used to estimate the complexity of the ordinary ECM suggests that our new method will

easily find 60-digit factors, will often find 75-digit factors, and occasionally find 90-digit factors.

 Several important ciphers, such as those of RSA and of Rabin and Williams, could be broken if one

could factor large integers quickly. Each discovery of a new integer factoring algorithm either increases

the size of the keys that must be used in these ciphers or imposes some other restriction on them. In the

case of the new factoring method proposed here, the restriction is that the composite key must not have

a prime factor in the range that could be found by this method.

 Our new factoring method would also be an enormous help to those who research the mathematical

problems that require the explicit factorization into primes of many large numbers.

baxxy ++= 32

baE ,

∞=+ PP

baE ,

baE ,

).3()(2

),2(

),845205(4

,1263

,2,1

2
12

2
122

3
11

3
212

3222346
4

224
3

21

≥−=

≥−=

−−−−++=

−++=

==

+−−+

+−++

my

m

ababxxabxaxxy

abxaxx

y

mmmmmm

mmmmm

ψψψψψψ

ψψψψψ

ψ

ψ

ψψ

.4

,
2
12

2
12

11
2

+−−+

−+

−=

−=

mmmmm

mmmm

y

x

ψψψψω

ψψψφ

baxxy ++= 32 0)274(16 23 ≠+−=Δ ba

).
)(

)(
,

)(

)(
(][

32 P

P

P

P
Pm

m

m

m

m

ψ
ω

ψ
φ

=

axxyb −−= 32

)(amψ)(amψ

.

4

1

1
4)deg(
2

2










−

−
=

oddismif
m

evenismif
m

mψ

na i mod2=

2,,1,mod2 Bina i L== pni
B =)),2(gcd(ψ

21, Bii ≤≤

)log(2 BBO

nZyx ∈,

2,,1)2(Bii
B L=ψ)),2(gcd(

2

1 ni
B

B
i ψ=∏

2B

∑

∑ ∑
−−− Δ−ΔΔ

−−−−

=

=

j
j

j j

jkj
j

kkj
j

jkjk TTxT

TTxTTx

)(

222

)(

)(2)(22

∑
−

=
=

1

0
)(

D

j

j
jtxtx 10, −≤≤= DkTt k

k

2)1(+=Δ nnn

10 ,, −dxx K

1,,0),(−= dkTx k K

cC 2=
dC 2≥

jTxx jj
Δ=

)(jxx =

yxz ⊗=

]1,0[),())((12
1 −∈= −+

Δ − DkzTTx kC
k k

))()((1 yDFTxDFTDFTyx ∗=⊗ −

baE ,

baE ,

∞∞∞

∞

baxxy ++= 32

baxxy ++= 32

baE ,

baE ,

nZyx ∈,

