Scene Adaptive Video Watermarking

Edward J. Delp

Purdue University
School of Electrical and Computer Engineering
Purdue Multimedia Testbed
Video and Image Processing Laboratory (VIPER)
West Lafayette, IN 47907-1285
+1 765 494 1740
+1 765 494 0880 (fax)
email: ace@ecn.purdue.edu
http://www.ece.purdue.edu/~ace
Multimedia Security

- “Everything” is digital these days - a copy of a digital media element is identical to the original
- How can an owner protect their content?
- Are images still “fossilized light”?
- What does all of this mean in terms of law?
- Does any security system really work or does it just make us feel good!
What Do We Want From a Security System?

- Access Control
- Copy Control

 - Playback Control
 - Record Control
 - Generation Control

- Auditing (fingerprinting)
 - Who did what and when?
Digital Communication System

Diagram:
- Digital Information Source
- Source Encoder
- Encrypt
- Channel Encoder
- Channel
- User
- Source Decoder
- Decrypt
- Channel Decoder
What is Watermarking?

• The use of a perceptually invisible authentication technique
 – “controlled” distortion is introduced in a multimedia element

• Visible watermarks also exists
Media Elements

- Audio
- Video
- Documents (including HTML documents)
- Images
- Graphics
- Graphic or Scene Models
- Programs (executable code)
Watermarking Scenario

- Scenario
 - an owner places digital images on a network server and wants to “protect” the images
- Goals
 - verify the owner of a digital image
 - detect forgeries of an original image
 - identify illegal copies of the image
 - prevent unauthorized distribution
Where are Watermarks Used?

- Watermarks have been used or proposed in:
 - digital cameras
 - DVD video
 - audio (SDMI)
 - broadcast video (in US - ATSC)
 - visible watermarks now used
 - “binding” mechanism in media databases
 - key distribution systems
 - preventing forgery of bank notes

Usually as secondary security \(\Rightarrow\) conversion to “analog”
Multimedia Security - Tools Set

- Encryption
- Authentication
- Hashing
- Time-stamping
- Watermarking
Why is Watermarking Important?
Why is Watermarking Important?
Why Watermarking is Important?
Why is Watermarking Important?
A Overview of Watermarking Techniques

- Spatial watermarking
- Spatial Frequency (DCT or wavelet) watermarking
- Visible watermarks
Components of a Watermarking Technique

- The watermark, W
 - each owner has a unique watermark
- The marking algorithm
 - incorporates the watermark into the image
- Verification algorithm
 - an authentication procedure (determines the integrity / ownership of the image)
Main Principles

• Transparency - the watermark is not visible in the image under typical viewing conditions

• Robustness to attacks - the watermark can still be detected after the image has undergone linear and/or nonlinear operations (this may not be a good property - fragile watermarks)

• Capacity - the technique is capable of allowing multiple watermarks to be inserted into the image with each watermark being independently verifiable
Attacks

- Compression
- Filtering
- Printing and rescanning
- Geometric attacks - cropping, resampling, rotation
- Collusion - spatial and temporal
- Conversion to analog
Current Research Issues

• Theoretical Issues
 – capacity and performance bounds
 – models of the watermarking/detection process

• Robust Watermarks
 – linear vs. nonlinear
 – scaling and other geometric attacks
 – watermarking analog representations of content
 – new detection schemes
 – what should be embedded (watermark structure)
Research at Purdue

• Fragile and semi-fragile watermarks for forensic imaging
• Extending concept of robust image adaptive watermarks to video
 – is there a temporal masking model that works?
Fixed-length DCT Watermark

\[a = 0.1 \]
Fixed-length DCT Watermark

\[a = 0.5 \]
Fixed-length DCT Watermark

a = 1.0
Fixed-length DCT Watermark

\[a = 5.0 \]
Image Adaptive Watermarks (DCT)
Image Adaptive Watermarks (DCT)
Project Goal

Development techniques for watermarking compressed and uncompressed video sequences that exploit the human vision system
Video Watermarking Issues

- A video sequence cannot simply be treated as an ordered collection of images:
 - visibility issues in the use of “still” image watermarks
 - visibility issues in stop frames
 - human perception of motion is not accounted for in visual models for still images
 - embedding the same watermark in all the frames of a video sequence is not secure, an attacker can correlate across the entire sequence to estimate the watermark (temporal collusion)
Video Watermarking Issues

– embedding completely different watermarks in successive frames of a video sequence is not secure

– successive video frames are highly correlated, an attacker can exploit this to estimate and remove a watermark

– the techniques for compressing video do not necessarily encode each frame of the sequence identically

– the synchronization of the audio with the video sequence may be a consideration for watermark protection
Preliminary Results
Conclusions

• We have lots of work to do!
 – How robust is the embedding model?
 – Investigate the use of non-parametric detection
How I Spent My Summer