Adaptability in Multimedia Data Security

Bharat Bhargava, Changgui Shi and Sheng-Yih Wang
Department of Computer Science
Purdue University
Adaptability in Multimedia Data Security

- Different levels of security on Video Encryption
 - Maximum Security: Heavy-Weight Cryptography
 - Apply DES, IDEA, RSA, etc to the whole data
 - Medium Security: Light-Weight Cryptography
 - Selective Encryption using DES/IDEA, etc.
 - Minimum Security: Light-Weight Encryption
 - XOR, encoding table permutation, etc.
Adaptability in Multimedia Data Security

- Challenges on Video Security
 - Large Data Size
 - Two-Hour MPEG-I Video: 1GB
 - Real-Time Requirement
 - MPEG-II Video: 4MB/sec to 10MB/sec
 - 30 frames/sec
Adaptability in Multimedia Data Security

Four Light-Weight Video Encryption Algorithms

- CPA, VEA, MVEA and RVEA
- Incorporate encryption and MPEG compression in one step
- Add little overheads
- Software implementation is fast enough
Adaptability in Multimedia Data Security

- CPA (Codeword Permutation Algorithm)
 - Use a permutation of the Huffman codeword as the secret key
 - No overhead in MPEG Codec
 - Does not decrease compression rate
 - Limited key spaces
Adaptability in Multimedia Data Security

VEA (Video Encoding Algorithm)

- Secret key XORed on sign bits of DCT coefficients in I frames
- No limit on secret key length
- Weak for plaintext attack
Adaptability in Multimedia Data Security

MVEA (Modified VEA)

- Secret key XORed on sign bits of DCT coefficients in I frames
- Secret key XORed on sign motion vectors on P/B frames

More secure than VEA because all frames are changed
Adaptability in Multimedia Data Security

- RVEA (Real-Time VEA)
 - Secret key cryptography applied on sign bits of DCT coefficients in I frames and motion vectors on P/B frames
 - Bounded encryption time
 - Encrypt at most 64 bits for each macroblock
 - Most secure in all four algorithms
Adaptability in Multimedia Data Security

- **Adaptability Features**
 - **Data Selection**
 - Base: Sign bits of DCT coefficients in I frames
 - Additional: Sign bits of motion vectors on P/B frames
 - **Encryption Algorithms (in increasing strength)**
 - XOR
 - DES/IDEA
 - RSA
Adaptability in Multimedia Data Security

- Experiments
 - Currently we have four separate implementations for the four algorithms
 - A generic implementation which encompass all four algorithms with adaptable features is our next step
 - We will experiment on the dynamic adaptation of adaptable security features based on the resource constraint such as CPU utilization, Value of the video, etc.
MPEG encryption algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Security Ideas</th>
<th>Overhead</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEA</td>
<td>Encryption on sign bits of DCT coefficients of I frame using XOR operation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>MVEA</td>
<td>VEA + encryption on sign bits of motion vectors of P and B frame</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>MVEA</td>
<td>MVEA with XOR replaced by secret key cryptography. Encrypt only up to 64 bits per macroblock.</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>