Value-added Services on Software-Programmable Routers

Systems Software and Architecture Laboratory
Department of Computer Sciences
http://www.cs.purdue.edu/people/yau
http://ssal.cs.purdue.edu/
Motivations

- More sophisticated network contents
- More demanding network users
- Value-added services
 - accounting
 - security (copyright, authentication)
 - active caching
 - ...

Challenges

- Heterogeneous users
 - needs, priorities, purchased shares
- Untrusted programs
 - greedy, buggy, malicious, ...
- Diverse resources
 - space-shared, time-shared
- Diverse resource bindings
Our Approach

- Virtualized router resources
 - virtual machines
- Orthogonal fine-grained allocations
 - Resource Allocation objects
- Flexible/scalable packet classification
 - resource binding, per-flow processing
- Efficiency, modularity, configurability
Resource Abstraction

- Kernel Resource Allocation objects
- Independent/orthogonal objects
 - relative to resource consumers
- Flexible bindings to resource consumers
 - shared binding, dynamic binding (with runtime information), configurable parameters
- Hierarchical Scheduling of multiple resource types
 - CPU, network, memory pool, disk bandwidth
Schedulers for Resource Allocations

CPU Scheduler Network Scheduler Disk Scheduler Memory Scheduler
Packet Forwarding

- Possibilities
 - active program dispatch
 - trusted (kernel thread), untrusted (user process)
 - Per-flow processing
 - subscribed by dispatched router programs
 - security processing, application-level routing
 - Cut-through fast path
 - minimal delay
Processes in the router

- Thread
- Address Space
- Dispatch
- Function Dispatcher
- Input Queues
- Resource Allocation Manager
- Per-flow Processing
- Active Packet Cut-through
- Output Queues
- Packet Classifier
Packet forwarding decision

- Based on packet header information
- Packet classification
 - scalable to many dimensions
 - scalable to many classification rules
 - flexible
 - support multiple and least-cost matches
Resource Binding Decision

- Active packet starts router program
- Program must run with resource allocation
 - Which allocation?
 - Retrieved as part of packet classification
 - Request to create new allocation
 - Request to use existing allocation with given key
System Implementation

- Extension to Solaris 2.5.1
- Deployed on UltraSPARC/Pentium network
 - Ethernet, Fast Ethernet, Myrinet
 - Support for existing applications
- Modular subsystems with well-defined interfaces
- Simple command interfaces to launch legacy applications
Basic Costs

- Resource Allocation control
 - create + delete 15.4 microseconds kernel, 19.6 user
 - bind 4.8 kernel, 9.0 user
 - unbind 2.4 kernel, 6.6 user

- Function dispatch
 - thread: about 145 microseconds, low variance
 - process: 0.77 to 1.1 ms, application-dependent
Packet Forwarding
Performance

- Five dimension
 - exact, prefix, range, wildcard
- Database size up to 256 K rules
- Average lookup cost of 7.8 microseconds
 - 1.1 Gb/s throughput for 1000 byte packets
- Add/delete 10.8/14.9 microseconds
 - 67,000 updates per second
Summary

- Resource management important for software-programmable routers
- Building system prototype as solution step
 - packet classification
 - router program dispatch
 - unified and orthogonal resource abstraction
 - schedulers for major resource types