Reliably Exploiting Audit Logs

Chapman Flack*
Advisor: Mikhail J. Atallah

April 20, 2000

*Portions of this work were supported by the Intel Foundation, by contracts MDA904-96-1-0116 and MDA904-
97-6-0176 from Maryland Procurement Office, and by sponsors of CERIAS.



Motivation

Many techniques for information assurance and security involve extracting
information from logs. Tools that exploit logs may not deliver their expected
benefits, and may even add vulnerabilities of their own, if the information
extracted is not accurate, or if unexpected log content can cause them to fail.

So logs must obviously be protected from alteration, a problem already studied
by others. But log tamperproofing touches only part of the problem.



Event E

Logged System

Producer

Log integrity techniques (studied by others) assureonly that R=R’.
Reliable producers and consumersthat demonstrably correspond (
are also needed for assurancethat E = E'.

Event E’

Consumer

occurred

Conclusions




Approach

Assured correspondence between log producers and consumers is needed to
establish robustness (nothing the producer can write in the log will cause
the consumer to fail on reading) and semantic accuracy (what the consumer
concludes from a log entry correctly reflects the event and system state
observed by the log producer).

— Document log syntax and semantics carefully in a specification sufficiently
formal that both producer and consumer can be shown to implement it.

— A natural form is a grammar, arranged and annotated to serve as a reference
for semantics as well as syntax.

If the specification allows ambiguous or indistinguishable records to be produced
for distinct events, semantic loss is inevitable. A grammar can be machine
checked for such problems.

This approach was demonstrated by building a grammar for Solaris BSM logs.



Relation to Content/Semantics

While the community still strives to pin down log content and semantics, is it
an extravagance to attend to grammar and syntax?

Claims:

— Syntax overlooked is semantic loss; structure carries meaning.

Theory: log produced by automaton = all syntax variation reflects state.
English analogy: French train conductors early to strike / to strike early.
BSM examples: ioctl, rename.

— Discussions and critiques of log content and semantics require something
concrete to discuss; detailed specifications of existing formats provide that
focus.

— The process of formalizing a log specification facilitates both automatic and
human recognition of weaknesses / ambiguities / omitted content.

The last point was demonstrated as we formalized a BSM specification.



Alternatives

Some information can be extracted without regard to grammatical structure,
like skimming a natural language text for key words. Can work when:

e Small fraction of log content is of interest
e That fraction can be characterized in advance and readily distinguished

e Semantic nuances are of no concern

ASAX, IDIOT, and USTAT are examples of ID tools supporting BSM with a

skimming approach.



“Skimming”

Advantages:

— Conceptually simple
— Low processing cost up front
— Does not require specialized tools like parser generators

Drawbacks:

— Invalid input detected late or not at all
— Semantics carried by syntax lost, recoverable (if at all) only by duplicating

some actions of a parser in later processing
— Dithcult to identify and check assumptions concerning expected input

sequences



Motivation, revisited

For some applications skimming is not suited, such as deep canonicalization
illustrated by the Common Intrusion Specification Language (CISL) of the
Common Intrusion Detection Framework (CIDF).

Shallow vs. Deep Canonicalization

ASAX, IDIOT, and USTAT do not evaluate their detection rules directly against
the native log, but convert parts of it first to some canonical form. Their
canonical forms may be called shallow.

— Simple rearrangements of the native records (discard fields of no interest,
align data on word boundaries)

— Semantics not independently specified, require familiarity with native form.

— Can simplity porting ID engines between platforms

— but not ID patterns or rules—these deal with native log syntax and semantic
issues preserved in the canonical form.



Deep Canonicalization

A deep canonical form, eg. CISL, has semantics explicitly specified,
independent of any native log format. In an ID system based on deep
canonicalization, not only evaluation engines but intrusion patterns themselves
can be ported between platforms with similar vulnerabilities.

— CISL is rich enough to express the semantic nuances of the native form
— but that means a CISL canonicalizer must correctly and completely discern
and translate the original semantics

If tools (such as CIDF E-boxes) do only the familiar skimming of input log
formats, the results will be familiar: CISL streams that cannot be properly
interpreted without knowledge of the original format (CISL degenerates to a
shallow form), or that explicitly and expressively mistranslate the log. Either
way, CISL would not live up to its promise.



Completed work

Heavily annotated grammar for BSM through Solaris 2.6
Available in a BSM-parsing package for quick-start BSM-based projects

Discrepancies and ambiguities in BSM documentation identified in the process
are detailed with hyperlinks to original BSM docs for comparison

Addressed feasibility /efficiency concerns that may have contributed to historical
neglect in this area



Efficiency

e A parser for BSM can be efficient, mostly LL(1) with some localized, bounded
backtracking.

e Parse early and seldom: distill the semantics into an explicit internal form that
can be consulted directly in later processing

e Or else: parsing effort not spent up front is duplicated by all ID rules or other
processing affected by the same syntactic feature

10



Future directions

e Safe skimming
— When interest is only in a subset of log content known in advance, can parser
generator analysis eliminate unnecessary parse-time tests and decisions?
e Variant formats

— Configurable options in BSM (et al.) slightly alter the grammar of the logs
produced

— Can environment grammars (Ruschitzka) be used to avoid proliferation or
overcomplication of grammars?

11



