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* é PROACTIVE ADVERSARIAL MODELING C”EV’-"’M
= PROJECT OVERVIEW (FY18-25)
Goal & Objectives: Impact & Capability:
* Improve and complement attack detection « Enhanced network robustness
» Enhance prevention (e.g., deceptive network) » Defensive advantage against adversaries
« Mitigate successful attacks (e.g., redirecting » Deeper understanding of the adversaries’ TTPs
attackers) for network intrusions and reconnaissance
Approach: Key Stakeholders:
 Learn and predict adversaries’ exploit preferences « FREEDOM ERP
* Intrusion forecasting on mobile ad hoc network » Cybersecurity and [oBT CRA
(MANETS) supporting adaptive deception « Tech Transition partners: C5ISR Center/I2WD

and S&TCD; and DARPA DSO SI3-CMD

GAPS & RESEARCH QUESTIONS RECENT PROGRESS
Limitations and gaps * Developed models to capture how adversaries learn
+ Previous work was mainly enterprise-focused for details about the target’s network (Albanese et al., ‘20)
detecting enterprise attack Campaigns ° Developed neural machine translation (NMT) models to
« Limited empirical data on adversarial TTPs in generate fake network traffic (Basu et al., "19)
honeynets * Demonstrated that we can uniformly learn the
« Research questions? adversary’s preferences using data from a modest
* |s it possible to develop predictive network-security number of deception strategles (Shietal, 19?
and resilience models of adversarial network » Formulated the loBT domain as a graph-learning
processes? What are the related constraints? problem through an adversarial lens (Park et al., “19)
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OUTLINE DEVEOM

Provide background
Present related work

Provide data description for network traffic in CTU-13
Scenarios

Present Semi-Supervised Learning for Exploits and Exploit
Kits (SLEEK) algorithm

Present metrics and SLEEK cases considered

Analyze prediction results from SLEEK experiments with
CTU-13 Scenarios

Present conclusions

UNCLASSIFIED



UNCLASSIFIED

. BACKGROUND

DIMENSIONS OF CYBER DECEPTION

g N N N [
Goal of Unit of Layers of Deployment
Deception Deception Deception of Deception
[ Improve and | Decision (e.., [ Physicarmac | | | [, ]
P accept connection) y Built-in solutions at
complement layers design phase
attack detection Response (e.g., > Z | )
(e.g., IDS) fake net response) f ]
. Network layer Added-to solutions |
Service (e.g., (e.g., docs
([ Enhance ) decoy service) < inserted into file
prevention (e.g., = . ) | system) )
deceptive ACt'V:ty (e.g;_l._,ts)lm. System layer g
network ey ) [ In-front target
it luti
\topology) J Weakness (Application Tayer) e, proxy,
s Mitigate N (e.g., vyeb L gateway) )
successful Configuration __applications) J (Isolated solutions |
attacks (e.qg., Data layer (e.g., | (e.g., fake
redirecting Data fake accounts, accounts, decoy
\__attackers) J documents) | L server) )
& 2R RN 2R

oY

)

Han, X., Kheir, N., & Balzarotti, D. (2018). Deception techniques in computer security: A research perspective. ACM Computing Surveys

(CSUR), 51(4), 1-36.
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7AN  TECHNICAL APPROACH [oEveom

=m

* Develop novel approaches to disguise a mobile network and
impair the attacker’s decision-making with false information

* |dentify cyber deception techniques relevant to tactical
networks considering computational resource constraints

« Autonomously prioritize units and layers of deception and
deployment of deception

« Learn the adversary’s COAs and adaptively automate the
deployment of deceptive measures

* Determine which deception strategies are optimal, using
game theory
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'A‘ FY20 SELECTED 6.1 RESEARCH EEVCDM

o ACCOMPLISHMENTS (CYBER CRA LFD)

« Goal: Deceive the adversary into believing that
honey users are real sys admins/users
Recall scores for NMT models
* Accomplishments:
— Used neural machine translation (NMT)

0.8 78 786 788
models to generate spearphishing e-mails i ' I I
» stm- 1 stm-2  transformer

— Proposed metrics that capture both topical
relevance and the grammatical structure of et
text generated by NMT models - -

— Found that the spearphishing filter performs
poorly in distinguishing between real and
automatically-generated content

Basu, C., Venkatesan, S., Chiang, C. J., Leslie, N. O., & Kamhoua, C. A. (2019). Generating Targeted E-mail Content at Scale Using
Neural Machine Translation. In DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security (DYNAMICS)
Workshop.
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AN FY20 SELECTED 6.2 RESEARCH -
am ACCOMPLISHMENTS (CYBER CRA LFD)

10.0.44.3
R:60
C:0

10.0.44.4
R:80
C:0

* Goal: Learn the adversary’s COAs and adaptively
automate the deployment of deceptive measures

Emernal

10.0.44.1
R188

10.0.44.5

 Accomplishments:
— Developed a novel model to capture how stealthy =
adversaries acquire knowledge about the target @ §' = {userl)
network’s topology and establish their foothold.
(b) S" = {userl, building_router}
— Quantified the cost and reward, from the adversary’s
perspective, of compromising individual nodes and - e o o o I It <ot it o

s;
IS
]
8
8

maintaining control over those nodes. i
— Evaluated our model through simulations in the [ castitie., , e
CyberVAN testbed e R

(a) Runtime (b) Reward

Nodes 400 Nodes 500 Nodes 100 Nodes 200 Nodes 300 Nodes 6400 Nodes 500 Nodes

— Demonstrated how our model can guide the
deployment of defensive capabilities (e.g.,
honeypots) to influence the behavior of adversaries

Cumulative Reward
Network Discovered (%)
g

13 5 7 9 11 13 15 17 19 21 23 25 13 s 7 9 11 13 15 17 19 21 23 25
Time Interval Time Intervals

(c) Cumulative Reward (d) Percentage of network nodes discovered

Albanese, M., Chadha, R., Chiang, C. J., Kamhoua, C. A., Leslie, N. O., Pham, L., Venkatesan, S. (2020, accepted). A
Quantitative Framework to Model Reconnaissance by Stealthy Attackers and Support Deception-Based Defenses. In [EEE CNS.
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"S FY20 SELECTED 6.1/6.2 RESEARCH E"-’VC"M

@D ACCOMPLISHMENTS (CYBER CRA)
* Goal:
— Deception mitigates the defender’s loss by misleading the attacker to make suboptimal
decisions.

— In order to formally reason about deception, we introduce the feature deception game (FDG), a
domain-independent game theoretic model and present a learning and planning framework.
 Accomplishments:
— Demonstrated that we can uniformly learn the adversary’s preferences using data from a
modest number of deception strategies.
— Proposed an approximation algorithm for finding the optimal deception strategy and show that

the problem is NP-hard.
— Performed extensive experiments to empirically validate our methods and results.

[ b nelima1d
Feature Observable value Hidden value el ponnedmen | S A
Operating system Windows 2016 RHEL 7 ol | g SN F e Joani ] = S0,nchm e
Service version v1.2 vl.4 [ [ p gt notmeds | Roas] |\ |
IP address 10.0.1.2 10.0.2.1 fea R W e i
Open ports 22,445 22,1433 seal -, L
= N +
Round trip time for probes N LI g % B gy s foan T
[Shamsi et al., 2014] 16 ms 84 ms e
e of Tradwng Datsaer e hnaq,-unnul
Table 1: Some relevant features for cybersecurity (a) Leamming |-layer score function (b) Learming 3-layer score func

tion

Milani, S., Chan, K., Fang, F., Leslie, N. O., & Kamhoua, C. A. (2020, in-progress). Iterated Deception Games.

Shi, Z. R,, Procaccia, A. D., Chan, K. S., Venkatesan, S., Ben-Asher, N., Leslie, N. O., Kamhoua, C. A., & Fang, F. (2019).
Feature Deception Games. IJCAI 2019 Workshop on Strategic Reasoning.

3. Shi, Z. R,, Procaccia, A. D., Chan, K. S., Venkatesan, S., Ben-Asher, N., Leslie, N. O., Kamhoua, C. A, & Fang, F. (2019).
Learning and Planning in Feature Deception Games. In ACM EC 2019 Workshop on Learning in Presence of Strategic Behavior.

Phoenix, Arizona: ACM.
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'A‘ FY20 SELECTED 6.1 RESEARCH E'EVCDM

o] ACCOMPLISHMENTS

Goals: Examine the current state-of-the-art in vehicular communications security

Accomplishments:

» Developed a highly secure, resilient, and affordable MTD-based proactive defense mechanism, which
achieves multiple objectives of minimizing system security vulnerabilities and defense cost while
maximizing service availability.

« Proposed a multi-agent Deep Reinforcement Learning (mDRL)-based network slicing technique that
can help determine two key resource management decisions: (1) link bandwidth allocation to meet
quality-of-service requirements and (2) the frequency of triggering IP shuffling as an MTD operation.

» Applied this strategy in a tactical in-vehicle network that uses software-defined networking (SDN)
technology to deploy the IP-shuffling-based MTD by changing IP addresses assigned to electronic
control unit (ECU) nodes.

Agent1l Q Slice1 Controller i :
Networking ] Slice 3 Link 1= 0.4 Gb/s Link 2 = 0.5 Gb/s

Core components Security * i
Action for slice 3
Slice2 Controller

—
Networkin Securi 'ﬂ’
Infotainment e g ty ° E ¢
Slice3 Controller #
Agent3 O . B
nce Networking Security O Q’ i
Action for s

Changing 2 IP addresses per second

Master Controller
Action for slice 2 Link 1 =0.3 Gb/s Link 2 =0.2 Gb/s
Slice 2

Changing 3 IP addresses per second

Low-performa
required lice1 . Link 1 = 0.3 Gb/s Link 2 = 0.3 Gb/s
Slice 1
. f Changing 5 IP addresses per second
. Physical resources W
In-vehicle SDN " " .
Networking resources Link 1 = 1Gb/s Link 2 = 1Gb/s

Security resources Changing 10 IP addresses per second

Yoon, S., Cho, J., Kim, D. S., Moore, T. J., Nelson, F. F., Lim, H., Leslie, N. O., & Kamhoua, C. A. (2020). Moving Target
Defense for In-Vehicle Software Defined Networking: IP Shuffling in Network Slicing with Multiagent Deep
Reinforcement Learning. In SPIE, Al and ML for Multi Domain Operations Applications II.
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'é‘ FY20 6.2 RESEARCH ACCOMPLISHMENTS: E'EVCDM
) INTRA/INTER VEHICULAR NETWORKS

Goals:

+ Examine the current state-of-the-art in vehicular ne(fzggll(a;or
communications security

» Explore the use of 5.6 GHz band for cooperative
Intelligent Transportation System (ITS)

Cellular Trusted

Authority

Base Station

’
Accomplishments: 53
+ Identified threat scenarios in the 2 paradigms for DSRG RS DSRG
vehicular communications: o~ V2l

—  Cellular vehicle-to-everything (cV2X) and
— Vehicular ad hoc networks (VANET)
+ Compared the most common anomaly detection
techniques used in these vehicular networks
+ Examined machine learning and knowledge-based : Upto Thbps [ U to 19.2Kbps

methods for anomaly-based intrusion detection Diagnostics m
systems in ITS F*? | . ,

DSRC network for,
V2V and V2|

In-progress research: ooty oot | |1} a Lov cost bus Uses for

«  Currently using tools SUMO and NS-3 for simulation Do system SR P ’ qoorlockes
for vehicular routes I

 Create malicious routes and vehicles in network and Up to 20Mbps T U to 150Mbps
nodes (e.g., vehicles and RSUs) that are able to ***
observe traffic &

+ Make changes to muIti-ho_p protocol so that malicious | Advanced Drver Assistance Designed for Mutimecia -
nodes see unwanted traffic and target false nodes. S B PP RRPPPIY:

Dayal, A., Leslie, N. O., Kamhoua, C. A., Marojevik, V., & Reed, J. (2020, submitted). Taxonomy of Anomaly Based
Intrusion Detection Systems in Vehicular Communications. In IEEE Vehicular Technology Magazine.
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FY20 SELECTED 6.1 RESEARCH E'EVCDM
o ACCOMPLISHMENTS (IOBT CRA)
» Goal: Advance current 0BT efforts with a TUER g TR
collection of prior-developed cybersecurity (»)

techniques | \O@ & G

« Accomplishments: }
— Reviewed for applicability to loBT operational .| .. ‘\
o /\ @

environments:
« Diverse asset ownership iR ° Q OPFOR
» Degraded networking infrastructure -

« Adversarial activities Configuration of OWNFOR (Blue) and OPFOR (Red)

assets within a Smart City environment (Grey)

. isabling of Network Links
— Covered research techniques focused on two (s aton .
themes: ? O ’ @
« Supporting trust assessment for known/unknown ey Q= M X O
loT assets CS X @
+ Ensuring continued trust of known loT assets and > — . 5
IOBT SyStemS Network Link Compromise ?
| | | . m ________ . => -‘fij ________ .
Agadakos, |., Ciocarlie, G. F., Copos, B., Emmi, M., George, J., Leslie, %5”1 . tinkto ‘
N., & Michaelis, J. (2019). Application of Trust Assessment Techniques X 4
to 1oBT Systems. In MILCOM 2019-2019 IEEE Military Communications Types of interaction between OPFOR IoT assets
Conference (MILCOM) (pp. 833-840). IEEE. and Civilian + OWNFOR IoT networks
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A WHY IS NETWORK RESILIENCE [BEveom
IMPORTANT?

*  Botnet attacks represent a serious threat to commercial and governmental networks
*  Cyber-physical systems (CPS), including Internet of Things (loT) have severe results if there are
failures
— Increased risk of cyberattacks
— Energy network (smart grid)
— Transportation systems and large industrial facilities

*  Proactive techniques for network resilience include redundancy and compartmentalization
— Redundancy allows to tolerate attacks to a certain extent

— Compartmentalization attempts to restrict the cyberattack locally and prevent its expansion across the
entire network

— Configuration and set-up of intrusion detection and prevention systems (IDS/IPS)
*  Reactive techniques follow this high-level, three-step approach

— Detecting an attack

— Mitigating its impacts

— Restoring a system's usual operation

Notional System
functionality

Cyberattack
attime T
_ . o _ , ! time
Ganin et al., 2017. Resilience and efficiency in transportation networks. Science Advances. '~ Proactive —» <4 Reactive P
Linkov et al., 2018. Risk and resilience must be independently managed. Nature. T

UNCLASSIFIED
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A NIDS BACKGROUND [BEveom

=m

Intrusion Detection System (IDS). “...a real-time intrusion-detection
expert system that aims to detect a wide range of security violations
ranging from attempted break-ins by outsiders to system

penetrations and abuses by insiders.” (Denning, 1987)

* Detection models and algorithms

— Signature-based g |
— Anomaly-based
* Host-based IDS (HIDS) 4
* Network IDS (NIDS)
o

A typical test-bed for Snort NIDS evaluation
(Karim et al., 2017 Computers)

UNCLASSIFIED 13



UNCLASSIFIED

A NIDS CHALLENGES [BEveom

=

 Anomaly-based NIDS tend to have high false positive rates
(FPR)
— High FPRs may cause personnel to disregard those tools
— Results in unreported network breaches

* Signature-based NIDS may have high false-negative rates

— Misclassify cyberattacks with unknown

exploits as benign
— Examples of NIDS include Snort and Bro .

A typical test-bed for Snort NIDS evaluation (Karim et al., 2017
Computers)

UNCLASSIFIED 14
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7A) RELATED WORK [GEveon

Garcia et al. (2014) examined 5 Scenarios (i.e., Scenarios 1-2, 6, and 8-9) in the
CTU-13 Botnet Packet Capture (pcap) Scenarios

Both of their botnet detection methods use only the NetFlow files in CTU-13
Tradeoff in prediction accuracy results across many detection methods
considered (Garcia et al., 2014)

— Scenarios 1 and 2: If precision > 0.8, then TPR < 0.1 for those anomaly detection
methods considered

— Scenario 6: Best prediction performance for methods is precision > 0.79 and TPR <
0.71. For example, one model resulted in precision = 0.9 with TPR = 0.7

— Scenarios 8 and 9: Best-performing models resulted in precision = 0.5 and TPR = 1.0.
For all other models considered in Garcia et al. (2014), TPR < 0.3

1D Bot Characteristic Total flows  Botnet flows  Normal flows  Background flows
1 Neris IRC, SPAM, Click Fraud 2,824,636 39,933 30,387 2,754,316
2 Neris IRC, SPAM, Click Fraud, FTP 1,808,122 18,839 9,120 1,780,163
3 RBot IRC, Port Scan, US 4,710,638 26,759 116,887 4,566,992
4 RBot IRC, DDOS, US 1,121,076 1,719 25,268 1,094,089
5 Virut SPAM, Port Scan, HTTP 129,832 695 4.679 124,458
6 Mentri Port Scan 585,919 4,431 7,494 573,994
7 Sogou HTTP 144,077 37 1,677 142,363
8 Merli Port Scan 2,954,230 5,052 72,822 2,876,356
9 Neris IRC. SPAM. Port Scan. Click Fraud 2.753.884 17.880 43.340 2.692.664
10 Rbot IRC, DDOS, US 1,309,791 106,315 15,847 1,187,629
11 RBot IRC, DDOS, US 107,251 8,161 2,718 96,372
12 NSIS.ay PP 325,471 2,143 7,628 315,700
13 Virut SPAM, PS, HTTP 1,925,149 38,791 31,939 1,854,419

UNCLASSIFIED
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o RELATED WORK [BEveom

e Leslie, Martone, and Weisman (2018) developed a semi-supervised
NIDS algorithm

* We assessed 3 Scenarios in CTU-13 dataset using the NetFlow files to
accurately detect botnet behaviors using K-means clustering algorithm

* We examined Scenarios 4, 10, and 11 in CTU-13
— Each of these 3 Scenarios use the IRC protocol to perform DDoS attacks
— Scenario 4 has a lower prevalence of botnet flows than Scenarios 10 and 11

ID Bot Characteristic Total flows  Botnet flows  Normal flows  Background flows
1 Neris IRC, SPAM, Click Fraud 2,824,636 39,933 30,387 2,754,316
2 Neris IRC, SPAM, Click Fraud, FTP 1,808,122 18,839 9,120 1,780,163
3 RBot IRC, Port Scan, US 4,710,638 26,759 116,887 4,566,992
4 RBot IRC, DDOS, US 1,121,076 1,719 25,268 1,094,089
5 Virut SPAM, Port Scan, HTTP 129,832 695 4,679 124,458
6 Mentri Port Scan 585,919 4,431 7,494 573,994
7 Sogou HTTP 144,077 37 1,677 142,363
8 Merli Port Scan 2,954,230 5,052 72,822 2,876,356
9 Neris IRC, SPAM, Port Scan. Click Fraud __ 2.753.884 17.880 43.340 2,692.664
10 Rbot IRC, DDOS, US 1,309,791 106,315 15,847 1,187,629
11 RBot IRC. DDOS. US 107.251 8.161 2,718 96.372
12 NSIS.ay PP 325,471 2,143 7,628 315,700
13 Virut SPAM, PS, HTTP 1,925,149 38,791 31,939 1,854,419

Leslie et al. (2018). The Internet of Things (loT): Computational Modeling in Congested and Contested Environments.
In Proceedings of the NATO IST-152 Workshop on Autonomous Agents for Cyber Defence.

UNCLASSIFIED
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o RELATED WORK [BEveom

* Leslie et al. (2018) showed their K-means based algorithms for IDS have
precision values above 0.8, and FPR below 0.02 for CTU-13 scenarios

 We showed better performance for Scenarios 10 and 11 than Scenario 4
in CTU-13

* Our model yielded better prediction performance results than many
previous methods published for these Scenarios

Table 2. The k-means performance results for 3 of the CTU-13
botnet pcap scenarios characterized in Table 1: IDs 4, 10, and 11.

ID 4 ID 10 ID 11
accuracy 1.00 0.97 0.97
precision 0.98 0.85 0.82
recall 0.26 0.90 0.89
FPR 0.0 0.02 0.02

Leslie et al. (2018). The Internet of Things (loT): Computational Modeling in Congested and Contested Environments.
In Proceedings of the NATO IST-152 Workshop on Autonomous Agents for Cyber Defence.
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DATA DESCRIPTION FOR CTU-13 BOTNET [ofveom
SCENARIOS

Garcia (2013) at the Czech Tech University (CTU) published online thirteen
botnet scenarios, CTU-13

Each scenario includes

— Botnet pcap file

— Labeled NetFlow file

— READMIE file, with the capture time line and the original malware executable binary
from 2011 data

Garcia (2013) was not possible to publish the complete pcap file with the
background and normal packets because they contain private information

ID Bot Characteristic Total flows  Botnet flows  Normal flows  Background flows
1 Neris IRC, SPAM, Click Fraud 2,824,636 39,933 30,387 2,754,316
2 Neris IRC, SPAM, Click Fraud, FTP 1,808,122 18,839 9,120 1,780,163
3 RBot IRC, Port Scan, US 4,710,638 26,759 116,887 4,566,992
4 RBot IRC, DDOS, US 1,121,076 1,719 25,268 1,094,089
5 Virut SPAM, Port Scan, HTTP 129,832 695 4,679 124,458
6 Mentri Port Scan 585,919 4,431 7,494 573,994
7 Sogou HTTP 144,077 37 1,677 142,363
8 Merli Port Scan 2,954,230 5,052 72,822 2,876,356
9 Neris IRC, SPAM, Port Scan, Click Fraud 2,753,884 17,880 43,340 2,692,664
10 Rbot IRC, DDOS, US 1,309,791 106,315 15,847 1,187,629
11 RBot IRC, DDOS, US 107,251 8,161 2,718 96,372
12 NSIS.ay PP 325,471 2,143 7,628 315,700
13 Virut SPAM, PS, HTTP 1,925,149 38,791 31,939 1,854,419

UNCLASSIFIED
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B3 7 DATA DESCRIPTION FOR CTU-13
BOTNET SCENARIOS

* Implemented data from thirteen botnet pcap scenarios
called CTU-13 into SLEEK

* IRC, P2P, or HTTP protocols used in these pcap scenarios

* Botnets are characterized by either
— Sending SPAM

— Performing port scan (PS)

— Performing click fraud (CF)

— Performing distributed denial of service (DDoS)

! DEVCOM

ID Bot Characteristic Total flows  Botnet flows  Normal flows  Background flows
1 Neris IRC, SPAM, Click Fraud 2,824,636 39,933 30,387 2,754,316
2 Neris IRC, SPAM, Click Fraud, FTP 1,808,122 18,839 9,120 1,780,163
3 RBot IRC, Port Scan, US 4,710,638 26,759 116,887 4,566,992
4 RBot IRC, DDOS, US 1,121,076 1,719 25,268 1,094,089
5 Virut SPAM, Port Scan, HTTP 129,832 695 4,679 124,458
6 Mentri Port Scan 585,919 4,431 7,494 573,994
7 Sogou HTTP 144,077 37 1,677 142,363
8 Merli Port Scan 2,954,230 5,052 72,822 2,876,356
9 Neris IRC, SPAM, Port Scan, Click Fraud 2,753,884 17,880 43,340 2,692,664
10 Rbot IRC, DDOS, US 1,309,791 106,315 15,847 1,187,629
11 RBot IRC, DDOS, US 107,251 8,161 2,718 96,372
12 NSIS.ay PP 325,471 2,143 7,628 315,700
13 Virut SPAM, PS, HTTP 1,925,149 38,791 31,939 1,854,419

UNCLASSIFIED
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. EXAMPLE SESSION FROM NETFLOW FILE [2Fveam

» Sessions are labeled as botnet, background, or normal °
» Selected features are categorical (see arrows), and others are numerical
* Ports can be considered either categorical or numerical

Q

g S| S < 9
= S| 8 3 §
-~ S E~ N~
o = [o) S S
(<3 ~3 = o
i Q o » S

Source Port
Direction
Destination IP
Destination
Total Packets
Total Bytes
Source Bytes

Flow=From-
21061%23/9148 0 icmp 147.32.84.165 0x0005 -> 147.32.96.69 RED O 1066 1066 Botnet-V51-1-

ICMP

I\ Y,

=
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. EXAMPLE SESSION FROM NETFLOW FILE Et'fvccm

* Sessions are labeled as botnet, background, or normal
—eo * Selected features are categorical (see arrows), and others are numerical
* Ports can be considered either categorical or numerical

Original feature space
A

3
L~
>\
[+4]
-
3
~

Start Time
Duration
Protocol
Source IP
Address

Source Bytes

Source Port
Direction
Destination IP
Total Packets

Flow=From-
2011/08/18 0 icmp  147.32.84.165 0x0005 -> 147.32.96.69 RED 0 1 1066 1066 Botnet-V51-1-
16.700994
ICMP
Categorical
features

UNCLASSIFIED 21



UNCLASSIFIED

. EXAMPLE SESSION FROM NETFLOW FILE Et'fvcam

» Sessions are labeled as botnet, background, or normal
» Selected features are categorical (see arrows), and others are numerical
* Ports can be considered either categorical or numerical

Duration
Protocol
Source IP
Address

()
£
~
-~
S
(o]
=
L]

Source Port
Direction
Destination IP
Total Packets
Total Bytes
Source Bytes

Flow=From-
21061%23/9148 0 icmp 147.32.84.165 0x0005 -> 147.32.96.69 RED 0 1066 1066 Botnet-V51-1-

ICMP

=
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| SLEEK MODELING METHODOLOGY EI'EVCDM

Pre-process IP traffic data

— Cross validate input data

— Compute IP distance metrics

— Convert other categorical features to numerical

Visualize labelled network as a colored graph

— Blue nodes are IP addresses sending benign traffic

— Red nodes represent IP addresses sending botnet traffic
— Links represent network sessions between nodes

Implement clustering and classification machine learning
algorithms into SLEEK

— K-means and Gaussian Mixture Model (GMM) algorithms for clustering
with semi-supervised approach

— k-Nearest Neighbor (k-NN) algorithm for classification has best results

Examine SLEEK's prediction performance for identifying botnets
in testing phase

Measure the significance of features in metrics results

UNCLASSIFIED

Pre-process data

Visualize network
traffic for analysis

Train SLEEK
algorithm

Compute prediction
performance

Assess metrics

23
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6 PRE-PROCESSING NETWORK TRAFFIC DATA E'EVCDM

Cross Validation

— Divide each Scenario in CTU-13 into training and testing datasets

using K-fold cross validation, where K =5

Feature Space Modification and Normalization

Temporarily modify training set by removing feature vectors with IP
addresses, X’

Convert other categorical feature vectors to numerical values with
one-hot encoding

Normalize modified training data without IP addresses, X’

Find 2 centroids for malicious, C*, and benign, C, samples in the
modified training set, X’

UNCLASSIFIED 24
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%) /N  CONVERTING CATEGORICAL FEATURES  [GZvronm
TO NUMERICAL

* Label all sessions with “Botnet” or “Normal”
* Eliminate sessions labeled as “Background” traffic

* Convert categorical features to numerical features with one-
hot encoding for all categorical features except IP addresses

Training o tocols One-hot Training TCP UDP ICMP
Examples . Examples
Encoding
5 IeE 2 0 1/3 0
3 ICMP - ¢ 2 2

TCP

1/3

UNCLASSIFIED
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Bad /N METRIC FOR IP ADDRESSES IN FEATURE [BEveam
SPACE

* Let x and y be 32-bit IPv4 addresses, where each byte of x is
represented by x; such that x = x;.X,.X3.X,

* Define distance D(x, y) between IP addresses as
D(x,y) = Yi,a* ' (x; # y;), where a > 1 constant

x=|147. 32. 84. 165 x =| 147. 32. 84. 165
y = y=
Leta = 2.
Then, distance D=8+4+2+1 Leta=2.
D= 15 Distance between IP addresses is
D=2+1
D=3

UNCLASSIFIED

26



UNCLASSIFIED

VISUALIZING NETWORK TRAFFIC

e Use SLEEK visualization module

— Red nodes are malicious IP addresses
— Blue nodes are normal IP addresses
— Links signify connections between IPs

* Scenario 12 Characteristics in

CTU-13

— Use P2P protocol

— Synchronization attack

— Botnet flows are 67.97% of
total sessions

— 3 Bots in network

UNCLASSIFIED
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_ SLEEK NETWORK VISUALIZATION

UNCLASSIFIED

DEVCOM

Leslie, N. O. Using Semi-
Supervised Learning for Flow-
Based Network Intrusion
Detection. In Proceedings of
the ICCRTS, 6-9 November
2018, Pensacola, FL.
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A GRAPH DEGREE HISTOGRAM  [BEveom

=m

* Implemented network traffic data into SLEEK graph analysis
module

* Present degree histogram with network graph inset

* Bi-modal distribution in degree histogram of network
sessions data

e Scenario 12 Characteristics in CTU-13

— Use P2P protocol 18000 s
. . 16000 |- ete¥2fs oo,
— Synchronization attack ey
14000 ..:\;:..“ . .8' .‘
— Botnet flows are 67.97% 12000} IO
. .. 10000 | LT S
of total sessions
8000 |

— 3 Bots in network -

4000

2000

0
0 2 4 6 8 10

ee
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. SLEEK: A MACHINE LEARNING-BASED E'EVCDM

APPROACH TO NIDS

Developed K-means clustering algorithm in a semi-
supervised approach to assess SLEEK for the CTU-13
datasets

Developed a GMM-based algorithm to assess SLEEK
predictions for intrusion detection for CTU-13

Developed a k-NN-based algorithm to assess SLEEK
predictions for intrusion detection

— Assign each network session to the majority class (i.e., benign,
botnet) of its closest neighbors, where k is a parameter
— Best performing algorithm

e Across 13 Scenarios in CTU-13

e Each Scenario of CTU-13 was implemented into 3 configurations of IP
distance metric for SLEEK

UNCLASSIFIED
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& PREDICTION METRICS [BEveom

CTU-13 Scenarios have a high prevalence of benign IP traffic

— True positive rate (TPR) and False positive rate (FPR) are often
presented to show prediction performance of NIDS

— These metrics alone are insufficient metrics for full view of NIDS
prediction performance

Analyzed prediction metrics from test data, including
— Accuracy

— Precision is a valuable metric from information theory that is a “true

positive accuracy measure,”
TP+FP

— Recall is another prediction performance metric also known as true

positive rate,

— FPR

TP+FN
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. CASES IMPLEMENTED IN SLEEK EI'EVCDM

* Case 1. Exclude IP addresses from the feature space entirely
e Case 2. Include IP distance metric

UNCLASSIFIED
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_ 7N METRICS RESULTS FOR SLEEK [GEveom
PREDICTIONS: CASE 1

* Implemented Case 1 without IP Distance Metric in SLEEK module
* High prevalence of negatives in data

— Accuracy is inadequate for these cases
— Precision and recall are better prediction performance metrics

e SLEEK makes excellent predictions for most Scenarios in CTU-13
for this case

— SLEEK precision >0.7 Sgrl\Ja-;lizs Botnet Type  Accuracy Precision Recall FPR
V! IRC, SPAM, CF 0.9922 0.7996 0.6160 0.00227
— SLEEK accuracy > 0.9 /2 IRC,SPAM, CF, FTP 0.9962 0.9431 0.7250 0.00057
v 3 IRC,PS,US  0.9981 0.8834 0.7664 0.00058
— If precision > 0.7, place green 4 IRC,DDOS,US 09973 0.0505 0.0058 0.00040
5  SPAM,PS,HTTP 0.9902 0.6786 0.3149 0.00177
check J 6 PS 0.9992 0.9712 0.9816 0.00048
7 HTTP 0.9990 0.5000 0.0769 0.00008
8 PS 0.9981 0.5314 0.7447 0.00137
/9 IRG,SPAM,PS,CF 0.9651 0.8249 0.7696 0.01588
/ 10  IRG,DDOS,US 09994 0.9995 0.9929  0.00004
/ 11  IRC,DDOS,US  0.9989 0.9988 0.9871 0.00010
12 P2P 0.9937 0.5766 0.1820 0.00090
/ 13 SPAM,PS HTTP 0.9902 0.8350 0.6590 0.00276
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PREDICTIONS: CASE 2

* Implemented Case 2 with novel IP distance metric in SLEEK module

METRICS RESULTS FOR SLEEK

* SLEEK performs very well for several CTU-13 Botnet scenarios

SLEEK doesn’t detect botnets in most Scenarios for this case

SLEEK performs very well at detecting botnets performing DDoS attacks

3 Scenarios in CTU-13 have precision > 0.7 & accuracy > 0.9

If precision > 0.7, place green check
SLEEK had no predicted positives for selected Scenarios

! DEVCOM

CTU-1.3 Botnet Type Accuracy Precision Recall FPR
Scenarios
1 IRC, SPAM, CF 0.9855  0.0000 0.0000 0.00227
2 IRC, SPAM, CF, FTP  0.9884 nan 0.0000 0.00057
v 3 IRC, PS, US 0.9943 0.7778 0.0013  0.00058
v 4 IRC, DDOS, US 0.9975 0.0000 0.0000 0.00040
5 SPAM, PS, HTTP  0.9930 nan 0.0000 0.00177
6 PS 0.9917 nan 0 0.00048
7 HTTP 0.9994 nan 0.0000 0.00008
8 PS 0.9979 nan 0.0000 0.00137
9 IRC, SPAM, PS,CF 0.9104  0.0000 0.0000 0.01588
v 10 IRC, DDOS, US 0.9991 0.9999 0.9886  0.00004
v 11 IRC, DDOS, US 0.9983  0.9988 0.9786  0.00010
12 P2P 0.9931 0.0667 0.0023  0.00090
13 SPAM, PS, HTTP  0.9792 nan 0.0000 0.00276

UNCLASSIFIED
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'A‘ COMPARISON OF MACHINE LEARNING E"_:VCDM

o ALGORITHMS FOR DETECTING SPAM/CF
SPAM, CF, FTP)
Precision 0.9431 0.0821 0.0003
Recall 0.7250 0.9799 0.0201
FPR 0.00057 0.1284 0.8693

SLEEK (Case 1) with K-means algorithm has a higher recall for Scenario 2 than k-NN and GMM
However, k-NN has a higher F,-measure for Scenario 2.

Scenario ID 9 (IRC,
SPAM, PS, CF)

Precision 0.8249 0.1876 0.0583
Recall 0.7696 0.5015 0.4985
FPR 0.01588 0.2112 0.7825

» SLEEK (Case 1) with k-NN algorithm has better prediction performance than K-means and
GMM for Scenario 9
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COMPARISON OF MACHINE LEARNING E’,EVCDM
o ALGORITHMS FOR DETECTING DDOS ATTACKS

CTU-13 Datasets:
DDoS Scenario 10

Precision 0.9995 0.8046 0.0064
Recall 0.9929 0.8167 0.0690
FPR 0.00004 0.0175 0.9512

DDoS Scenario 11

Precision 0.9988 0.7888 0.5169
Recall 0.9871 0.8177 0.9843
FPR 0.00010 0.0181 0.0758

For both DDoS scenarios in CTU-13, IDs 10 and 11, SLEEK (Case 1) with k-NN algorithm has
better prediction performance than than it has with K-means and GMM algorithms.
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7AN DISCUSSION

Distance metrics on the source and destination
IP addresses features greatly impact results

SLEEK performs exceptionally well with k-NN algorithm at detecting

SLEEK Case 1 has

! DEVCOM

cyberattacks that in 13 Scenarios of CTU-13 > Scenario5
igh # of FN for implemented in SLEEK
— Perform port scans Scenario 5 Case 2 has no predicted
positives
— Perform click fraud
CTu-13 Case 1 Case 2
— Send Spam Scenarios Botnet Type Accuracy Accuracy
— UselRC prOtOCO| 1 IRC, SPAM, CF 0.9922 0.9855
SLEEK Case 1 Wlth k-NN algorithm 2 IRC, SPAM, CF, FTP  0.9962 0.9884
3 IRC, PS, US 0.9981 0.994
has the best prediction results 4 IRC, DDOS, US ~_0.9973 _0.997
. 5 SPAM, PS, HTTP 0.9902 0.9930
— SLEEK with K-means and GMM . ps 09992 09513
have poor performance results 7 HTTP 0.9990  0.9994
8 PS 0.9981 0.9979
9 IRC, SPAM, PS, CF  0.9651 0.9104
10 IRC, DDOS, US 0.9994 0.9991
11 IRC, DDOS, US 0.9989 0.9983
12 P2pP 0.9937 0.9931
13 SPAM, PS, HTTP 0.9902 0.9792
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CONCLUSION [GEveom

Experiments show quite accurate prediction performance
results for SLEEK, a collection of NIDS algorithms

NetFlow files from other data sources can be implemented
with minimal level of effort

Metrics for pre-processing the feature space are easily
configurable

Network visualization is easily configurable to include
animation over time and labeling

Existing signatures from signhature-based NIDS like Snort
can be implemented into SLEEK

UNCLASSIFIED
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7AN  WAY AHEAD [oEveom
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« Start integration of RF and cyber deception techniques between
SEDD and CISD (FY20)

 Incorporate computational algorithms for honeynet allocation (FY20)

* Implement machine learning algorithms for predicting adversaries’
preferences for network intrusions (FY20)

* Implement adaptive honeynet configuration algorithm (FY21)

* Develop and implement software-defined networking (SDN)
approaches for cyber deception (FY22-23)

* Integrate RF and cyber deception techniques between SEDD and
CISD (FY24)

UNCLASSIFIED
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7AN  SUMMARY [oEveom
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Main Technical Accomplishment FY20

Preliminary implementation of location deception demo in Python, CyberVAN,
and sdt3d tools

Developed scalable algorithm for POSG for cyber deception

Demonstrated that one can learn the adversary’s preferences using data from
a modest number of deception strategies

Three books published by IEEE Press

Other Accomplishments in FY20

Presentations: 20+ presentations
Conference paper or journal article submissions: 50+ papers

Engagements with broader S&T community: DARPA DSO SI3-CMD,
Cybersecurity CRA, 1oBT CRA
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/AN  ALGORITHM FOR IP ADDRESS METRIC [BEveom
@m

Input: X,, original training set; and the 2 centroids in X’, the modified/normalized
training set (without IPs), of the examples labelled as malicious, C*, and benign, C

Output: X* a modified feature space with 4 additional feature vectors
concatenated with X’ to represent the IP metric for distances between

a) Source (destination) IP addresses in training data and
b) Source (destination) IP of the training sample closest to each centroid

Find sample in training set, x € X’, with the minimum L2-distance to the malicious centroid, C*.
Repeat Step 1 for C

3.  Find the associated training example in X that maps to these 2 samples in X’ (found in Step 1) that
are closest to the 2 centroids

4. Compute the IP metric for distances between feature vectors for source and destination IP addresses
in original training set, X, and training samples of the modified training data identified in Step 3

Repeat Step 4 for the malicious centroid, C*

Create four additional feature vectors with IP distances computed in Steps 4 and 5 and concatenate
with the modified feature space, X’

7. Normalize feature space for test data with mean and standard deviation from the modified training
data

8. Modify test data with distances between its feature vectors for source and destination IP addresses
and the malicious and benign centroids of the normalized/modified training set using
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a‘ VISUALIZING NETWORK TRAFFIC

=m

* Developed the SLEEK visualization module

— Red nodes are malicious IP addresses
— Blue nodes are normal IP addresses
— Links signify connections between IP addresses

 Scenario 5 Characteristics in CTU-13
— Use HTTP for port scanning and sending spam

— Scan web proxies
— Botnet flows are 0.54% of total sessions

UNCLASSIFIED
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GRAPH DEGREE HISTOGRAM  [BEveom
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Implemented Scenarios in the SLEEK graph analysis module

Present degree histogram with network graph inset

Bi-modal distribution in degree histogram of network
sessions data

Scenario 5 Characteristics in CTU-13
— Use HTTP for port scanning

Degree Histogram

and sending spam
— Scan web proxies
— Botnet flows are 0.54% of total

sessions
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PLANNING FOR THE OUTDOOR DEMO
oo

Z DEVCOM

Questions: e
* RF communications ®,
— What RF links on the blue-force vehicles ®
that the on-board devices will use to O

O

O

communicate with the devices at the FOB?
* Range, bandwidth, link stability of the RF links

LEGEND

Blue-force vehicle
Decoy

Blue-Force FOB node

Decoy FOB node
Virtual blue-force node

Virtual decoy node

to support reachback to the FOB

— What RF links are to be used on the decoy
devices?

» Other than ISM band push-to-talk, any other
RF links on decoys supporting reachback to
the FOB such that remote monitoring or cyber
deception may be performed? ..

Virtual FOB at the
demo venue
(indoor or outdoor)

« Decoy devices (single board
computers?)

— If RF links on decoys support reachback to
the FOB, is it possible to run software on
the decoys?

 Demo logistics

— What are the key points to be

demonstrated?

betwéen the
twd’sides
/

UNCLASSIFIED
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"; PROACTIVE ADVERSARIAL MODELING E"E S
] HEILMEIER CATECHISM

1. What are you trying to do? Articulate your objectives using absolutely no jargon. What is the

problem? Why is it hard?

Army platforms/dismounts are vulnerable to adversary detection, classification, identification, geolocation, and kinetic/non-kinetic
targeting

Lack cyber deception or decoys

Limited resiliency in congested CEMA environment

2. How is it done today, and what are the limits of current practice?

Current cyber deception strategies suffer from the following limitations:

Mainly enterprise-focused geared towards detecting enterprise attack campaigns;

Focused on business applications mimicry to deliver technologies that deceive and contain a near-peer or peer adversary; and
Assumption that attackers act alone and ignore the coalitions among attackers.

. What’s new in your approach and why do you think it will be successful?

Commercial cyber deception products are not designed to fulfill several important Army objectives, including:
Mission Resilience

Resource-constrained environments (e.g., size, weight, power, run time, memory usage)

Vehicle and tactical networks

Simple to deploy and maintain. Does not require subject matter experts in the field

Enable Multi-Domain Operations

. Who cares?

TRADOC Pamphlet 525-3-1, The U.S. Army in Multi-Domain Operations 2028 (Dec 2018) identifies deception as being necessary
for robust lines of communication.
Moreover, the publication entitled, Army Support to Military Deception, FM 3-13.4 (February 2019) states,
» Deception applies to all levels of warfare, across the range of military operations, and is conducted during all phases of
military operations.
* When properly integrated with operations security (OPSEC) and other information-related capabilities (IRCs), deception can
be a decisive tool in altering how the enemy views, analyzes, decides, and acts in response to friendly military operation.
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'A‘ PROACTIVE ADVERSARIAL MODELING E'EVCDM
) HEILMEIER CATECHISM(CONT.)

5. If you’re successful, what difference will it make? What impact will success have? How will it be
measured?

+ Developing adaptive cyber deception approaches enhances network resilience and better positions the Army to face
adversaries capable of deploying automated cyberattacks

+ Adaptive cyber deception provides the Army with a defensive advantage against adversaries with the following solutions

» Hiding mission critical assets through camouflage;

* Misrepresenting a system with obfuscation techniques; and

» Luring the enemy to expend resources on fake nodes, including decoys and honeynets, while real systems remain safe and continue
to execute mission critical tasks.

» Using computational algorithms and modeling approaches for adaptive, autonomous deception, the Army will gain a deeper
understanding of the adversaries’ tactics, techniques, and procedures (TTPs) for network intrusions and reconnaissance

* An example metric is the amount of generation time for a dynamic honeynet from initial adversarial network characterization

6. What are the risks and the payoffs?

Risk Mitigation

Most graph problems suffer from a combinatorial Use of heuristic search algorithms that quickly converge and find

explosion of the number of states with the network  optimum policies that are scalable

growth

Centralized solutions are not appropriate for ad hoc Develop distributed algorithms that converge to the optimum

tactical networks that are distributed systems policies by local estimates, sharing with neighboring networked
devices, and iterative computation

7. How long will it take? ERP Project end date is FY25.
8. What are the mid-term and final “exams” to check for success? How will progress be measured?

» Develop machine learning algorithms to improve predictions of the number or occurrence of network attacks for effectively

implementing adaptive, dynamic honeynets (FY20 Q4).
+ Assess prediction performance results and sensitivity analysis for machine learning forecasting algorithm implementation (FY21 Q1).
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Community Detection Modeling with
Machine Learning
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IOBT NETWORK AS A GRAPH (1/2)

(b) A graph representation of the loBT.

 The loBT, an application of loT, can be represented as a graph.

Park, J., Mohaisen, A., Kamhoua, C. A., Weisman, M. J,, Leslie, N. O., & Njilla, L. (2019). Cyber Deception in the
Internet of Battlefield Things: Techniques, Instances, and Assessments. In 20th World Conference on Information
Security Applications (WISA 2019), August 21-24, 2019. Maison, Jeju, Korea.

UNCLASSIFIED

49



UNCLASSIFIED

'A‘ FY19 SELECTED RESEARCH E'EVCDM

o] ACCOMPLISHMENTS

» Goal: Deceive the adversary into misunderstanding the defender’s 0BT network activities
* Accomplishments:
— Formulated the 10BT domain as a graph learning problem from an adversarial point of
view
— Introduced various tools through which an adversary can learn the graph starting with

partial prior knowledge

— Developed machine learning algorithms to show that an adversary can learn high-level
information from low-level graph structures (i.e., number of soldiers, their proximity, and
the number (and type of) assets in the network

— Developed a powerful n-gram based algorithm to obtain features from random walks on :
the underlying graph representation of loBT Thos

— Provided microscopic & macroscopic approaches that manipulate the underlying loBT
graph structure to introduce uncertainty in the adversary’s learning

— Successfully demonstrated our approach’s effectiveness through various analyses and
evaluations.

Body Area Network
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o Mapped string . .
The random walk log Mapping dictionary (translated document) Counting the number of times

The random walk based graph exploration (original document) each n-gram occurs

Adversary’s strategy using random walk and n-grams

Park, J., Mohaisen, A., Kamhoua, C. A., Weisman, M. J., Leslie, N. O., & Njilla, L. (2019). Cyber Deception in the Internet of
Battlefield Things: Techniques, Instances, and Assessments. In 20th World Conference on Information Security Applications (WISA

2019), August 21-24, 2019.
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