Cybersecurity Key Principles A Principled Approach to Cybersecurity Engineering

O. Sami Saydjari, Cyber Defense Agency, Inc. 17 June 2020

Introduction

• Goals

- Understand 10 key cybersecurity engineering principles
- See the big picture of principles to secure system design
- Moving cybersecurity to an engineering discipline
- Background Basics
 - Confidentiality—Data whose value lies in its secrecy
 - Integrity—Ensuring data & system not changed maliciously
 - Availability—Ensure continued access to resources

1. Cybersecurity's goal is to optimize mission effectiveness; cybersecurity is never an end unto itself. [03.01]

© 2018, O. Sami Saydjari

Engineering Trustworthy Systems, O. Sami Saydjari

Description Cybersecurity's goal is to optimize mission effectiveness; cybersecurity is not an end unto itself

Systems have a primary mission

• sell widgets, manage money, control chemical plants, manufacture parts, connect people, defend countries...

Systems generate mission value

- affected by probability of failure
- from a multitude of causes, including cyberattack.
- The purpose of cybersecurity design
 - reduce probability of failure from cyberattack so as maximize mission effectiveness
- Rationale: Place security in collaborative vs adversarial role

The Challenge: Explicit Trade-off

2. Cybersecurity is about understanding and miligaling cyberaktack risk. [02,01]

Cybersecurity is about understanding and mitigating cyberattack risk. [02.01]

- Risk is the primary metric of cybersecurity. •
 - Understanding nature and source of risk is key to applying and • advancing the discipline.
 - Risk measurement is foundational to improving cybersecurity • {17.04}
- Cybersecurity risk •
 - probability of cyberattacks occurring multiplied by •
 - potential damages that would result if they actually occurred. •
- Estimating both quantities is challenging, but possible \mathbf{O}
- Rationale: Engineering disciplines require metrics to characterize, \bigcirc evaluate, predict, and compare © 2018, O. Sami Saydjari

3. Theories of cydersecurily come From theories of insecurily, [02,03]

Description Theories of cybersecurity come from theories of insecurity. [02.03]

Most important yet subtle aspects engineering discipline

- understanding how to think about it
- the underlying attitude that feeds insight

• As failure motivates and informs dependability principles

Cyberattack motivates and informs cybersecurity principles

Approaches to defend a system

- during design and operation,
- must come from understanding how cyberattacks succeed

Rationale

- How to prevent attacks without knowing success mechanisms?
- How to detect attacks without knowing how attacks manifest?
 © 2018, O. Sami Saydjari

Attack Classes

- Computer Network Attacks
- Lifecycle/Supply Chain Attacks
 - Development
 - Integration
 - Operations
- Signals Intelligence Attacks
- Human Intelligence/Insider Attacks
- Social Engineering
- Electronics Warfare
- Kinetic Attack for Cyber Effects

4. Cyberspace espionage, sabotage, and influence are goals underlying cyberattack; prepare for all three. [06.02]

Cyberspace espionage, sabotage, and influence are goals underlying cyberattack;

• Understanding adversaries = understanding their motivations and strategic goals

• Adversaries have three basic categories of goals:

- espionage—stealing secrets to gain an unearned value or to destroy value by revealing stolen secrets,
- sabotage—hampering operations to slow progress, provide competitive advantage, or to destroy for ideological purposes, and
- influence—affecting decisions and outcomes to favor an adversary's interests and goals, usually at the expense of those of the defender
- Rationale: Knowing Adversary values \rightarrow investments, targets, behaviors

5. Assume your adversary knows your mission and cybersecurity system better than you; the opposite assumption is folly. [06.05]

Description Assume your adversary knows your mission and cybersecurity system better than you

- Secrecy is fleeting \bullet
 - never depend on it more than is absolutely necessary {03.05}
 - true of data, applies even more strongly to the system itself {05.11}
- Don't make rash and unfounded assumptions \bullet
 - safer to assume they know as much as designer about system
- Beyond adversary knowledge of the system, \bullet
 - Assume co-opted part of system sometime during its lifecycle
 - May have changed a component to have some degree of control
- Rationale \mathbf{O}
 - Many subversion opportunities during system's entire lifecycle
 - Design, Build, Test, Deployment, Maintenance

Source Editor: Programming tool used to enter source code Compiler: Translator from high-level language to object code Linker: Links pre-compiled program libraries into the object code Loader: Places executable code into memory and prepares for execution

6. Michoul integrity, no olacr cybersecurily properties malter. [03.06]

Description Without integrity, no other cybersecurity properties matter.

- Some cybersecurity engineers hyper-focused Confidentiality
 - to the exclusion of adequate attention to the other two pillars •
 - particularly DoDers where protecting classified data is priority ullet
- All system properties depend on system integrity -> primacy 0
- **Reference monitor, requiring security-critical subsystems** •
 - correctly do required security functions,
 - **non-bypassable** so attacker cannot circumvent correct controls,
 - **tamperproof** so system cannot be altered without authorization.

No matter what properties a system possesses when deployed

- they can be immediately subverted by attacker
- altering system, replacing properties with ones desirable to attacker

7. A cyberallacker's priority largel is the cybersecurity system. [19.17]

A cyberattacker's priority target is the cybersecurity system.

- Criticality of cybersecurity subsystem
 - Closely following from primacy-of-integrity principle {03.06}
- To attack the mission
 - it is necessary first to disable any intervening security controls
 - clearing adversary's attack path from defense
 - including security controls that defend the security subsystem itself
- Protect & monitor cybersecurity subsystem carefully {23.12}

Cybersecurity subsystem protects the mission system

- Attacks on cybersecurity harbinger attacks on mission system {22.08}
- Cybersecurity system is key to attacking mission system
- Example: attacks on audit logs to erase evidence

8. Defense in depth without defense in breadth is useless; breadth without depth, weak. [08.02]

Description

Defense in depth without defense in breadth is useless; breadth without depth, weak.

- Much ado about defense in depth
 - Vaguely defined as layering cybersecurity approaches (people, tech)
 - Need precision to be useful in design process: layer how, WRT what?
 - WRT cyberattack space covering gamut of possible attack classes
- Mechanisms useful against one attack class is useless for others
- Thus, companion principle: *defense in breadth*.
 - creating depth to point of making a class of attack prohibitive
 - adversary may simply move to an alternative attack
- Ideally, the depth will cause adversary equal difficulty
 - For all avenues of attack, For all attack classes...
 - Be above the cost and risk thresholds of the attackers

Cyber Security Principles

24

9. Failing to plan for cybersecurity failuré quarancees calastrophic failure. [20.06]

Description

Failing to plan for cybersecurity failure guarantees catastrophic failure

System failures are inevitable {19.01, 19.05}.

- pretending otherwise is almost always catastrophic.
- applies to mission system and cybersecurity subsystem that protects it
- cybersecurity systems, like all systems, are subject to failure

Engineers must understand how their systems can fail, including

- failure of underlying hardware (microprocessors, internal buses)
- other systems on which they depend (network, memory, ext storage)
- A student of cybersecurity is a student of failure {07.01}, dependability
 - Security requires reliability; reliability requires security {05.09}
- Cybersecurity mechanisms not endowed with nonfailure magical powers
 - Subject to same Engineering-V failures as all system
 - Security code handle complex timing issues, hardware control

10. Cybersecurily strategy and tactics knowledge comes from deeply analyzing cyberalback encounters. [01.09]

Description Cybersecurity strategy and tactics knowledge comes from deeply analyzing cyberattack encounters

- Good cybersecurity operations is as important as good design
 - Cybersecurity mechanisms are highly configurable (e.g., FW rules)
- What are optimal settings of all various mechanisms?
 - Depends on variations in mission, system environment, attack status
 - Settings = trade-off space for addressing entire spectrum of attacks
 - No static optimal setting for all cyberattack scenarios under {22.07}
- Dynamic control \rightarrow complex control-feedback system {23.11} \bullet
- Knowledge to set parameters according to situation?
 - analyzing cyberattack encounters: real + simulated, yours + others
 - Theory: game theory, control theory
 - Strategic knowledge to guide default postures & future designs •
 - Tactical knowledge to improve quality and speed of response

Cockpit

Design

Support

System

© 2018, O. Sami Saydjari

Air Traffic

Control

Pilot

Training

Aircraft

Design