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Proposed College Curriculum Changes for Producing 
Secure Developers 

 

 

 

 

 

The need for more robust software is evident from the increasing number of cyberattacks 

occurring daily. [1] However, the fear of sophisticated nation-state actors and zero-day 

vulnerabilities is partially misplaced.  Although these are formidable enemies, companies and 

governments should be more concerned about a major threat from the inside: poorly constructed 

code.  A search of the 2017 CVE database shows that there are still new buffer overflow 

vulnerabilities being found [7], despite those being among the most basic type of exploits.  This 

leads to the question: Why are developers still implementing programs with simple 

vulnerabilities?  

 

The first place to look may be the educational background of software developers.  One 

major problem is that students who want to become software engineers see cybersecurity related 

courses and think, “That doesn’t apply to me”.  Then those students become developers, leaving 

security concepts to be implemented by a “security team”.  Security researcher Sarah Zatko gave 

a presentation [5] at the Hackers of Planet Earth (HOPE) Conference in 2014 diagnosing this 

systemic issue as “security afterthought syndrome”, and lamented that cybersecurity isn’t 

prioritized by many professors or taught by universities. Two years later, Professor Ming Chow 

of Tufts University and his colleague, Professor Roy Wattanasin of Brandeis University, replied 

to Zatko at HOPE 2016 [3], where they discussed being inspired by her presentation and made 

changes on their own campuses to address cybersecurity in computer science education. 

 

In order to determine if other colleges and universities were following the urgings of 

experts in the security community by making curriculum changes, I recently conducted a survey 

of over 100 colleges and universities in the United States and presented the results at the IEEE 

Secure Development (SecDev) Conference.  I worked with two of my interns at MIT Lincoln 
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Laboratory, and we reviewed the Computer Science curriculums of select schools, which were 

chosen based on their US News and World Report Rankings [6].  The schools were in the 2017 

listings for “Top 50 Nationally Ranked”, “Top 50 Regionally Ranked”, and “Top 50 Computer 

Science Programs”.    

 

In the first part of the research, we looked at every curriculum and course description, 

searching to see if any required courses had the word “security” in the description.  We found 

that 97 percent of computer science programs had at least one course that mentioned the word 

security in the description, however, only 31% of schools actually required one of those courses 

in their curriculum.  Furthermore, it was determined that the word “security” is too ambiguous to 

rely on as a metric, as word “security” meant cryptography, network protocol security, privacy, 

forensics, or cyber policy, just to name a few categories discovered in the survey.   

 

In the second part of the survey, we looked at the accreditations of the schools, and noted 

that the majority of top tier schools were ABET accredited (50% of Regionally Ranked schools, 

92% of Nationally Ranked schools, and 94% of the Top Computer Science schools).  This 

suggests that the ABET committee drives the curriculum requirements for these schools.  A 

search of the ABET computer science curriculum turns up a requirement for computer science 

programs, “To have an understanding of professional, ethical, legal, security, and social issues 

and responsibilities.” [4] Although some schools didn’t have ABET accreditation, they usually 

had another accreditation listed on their website, and their curricula were quite similar to those of 

the ABET schools.    

 

We are producing more software than ever before, in a landscape where there are also 

more malicious actors, so most software developers unknowingly have a target on their backs.  

We have to start preparing college students to enter the increasingly adversarial environment of 

the Internet by building security concepts into computer science and engineering education.  

Although there will always be new kinds of cyberattacks, computer science students should be 

well-informed about old attacks.  As an example, students who are learning C programming 

should not be taught to use strcpy() without learning what a buffer overflow is.  This issue was 

addressed in 2010 by three Carnegie Mellon professors who were planning to implement 
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changes in the Computer Science curriculum to increase “our emphasis on the need to make 

software systems highly reliable.” [2] Today, freshmen at Carnegie Mellon do, indeed, learn 

buffer overflow vulnerabilities in the required course 15-222 Principles of Imperative 

Computation, where students focus on the “correctness of programs”, not “security”.  

 

I assert that graduating computer science students who go on to become software 

developers without learning secure coding practices ahead of time are left to learn on the job, and 

when a more experienced developer isn’t auditing their work, another simple bug is implemented 

in production code, waiting to be discovered by the adversary.   It is proposed that more schools 

follow the model of Carnegie Mellon in teaching secure programming techniques. To do this, 

reaching out to accreditation establishments and advocating for changes in curriculum 

requirements is necessary, as well as promoting the use of phrases such as “correctness of code” 

and “expected execution” rather than the vague word “security”.  This will in turn produce 

graduates who will be less likely to write programs with commonly known vulnerabilities.   
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