C E R A S

The Center for Education and Research in Information Assurance and Security

Memory-Hard Proofs of Work

How can I charge a meaningful computation fee?

Jeremiah Blocki, Nathan Smearsoll Purdue University

What is a Proof of Work?

The prover runs $Prove^{H}(\chi, N) \rightarrow c$ The verifier runs $Verify^{H}(\chi, N, c') \rightarrow \{true, false\}$

- > *H* is a random oracle
- > χ is an input string
- > N is a security parameter

Honest Provers must:

 \succ c is the certificate \succ c' is a potential certificate

$$\ell_{v} = H(\chi, \ell_{v_{1}}, \dots, \ell_{v_{k}})$$

Green if internally consistent *Red* otherwise P_i pebbles the green graph

Label a Merkle Tree $\ell_s = H(s, \ell_{s||0}, \dots, \ell_{s||1})$

Extract from a queries. \perp if no such query.

What does it mean to be Memory-Hard?

H: $\{0,1\}^z \rightarrow \{0,1\}^\lambda$ is a random oracle/perfect hash function

Computation of algorithm A occurs over y rounds which make a batch of queries Q_i Receive back $H(Q_i) = [H(x_{i,1}), \dots, H(x_{i,i})]$ and old state σ_i

We measure cumulative memory complexity:

$$cmc(A^{H}(\dots)) = \sum_{i=1}^{y} |\sigma_{i}|$$

Memory-Hardness is more egalitarian.

What is a Memory-Hard Proof of Work?

The prover runs
$$Prove^{H}(\chi, N) \rightarrow c$$

The verifier runs $Verify^{H}(\chi, N, c') \rightarrow \{true, false\}$

Perfect Completeness:

 $\Pr\left[\operatorname{Verify}^{\mathrm{H}}\left(\chi, N, \operatorname{Prove}^{\mathrm{H}}(\chi, N)\right) = true\right] = 1$

 (ϵ, C) -Soundness:

 $\Pr[Verify^{H}(\chi, N, A^{H}(\chi, N)] \text{ and } cmc(A^{H}(\chi, N)) \leq C] \leq \epsilon$

We show that:

 $O\left(\frac{N^2}{\log N}\right)$

Our protocol is sound when instantiated with a depth-robust graph.

Instantiating with DRSample:

With high probability, any prover which outputs a valid certificate for our construction must have cumulative memory cost at least

Answer Challenges

 $c_i = (H(\chi, i, \tau) \mod N)$

We prove that:

You can extract a prediction of $|P_i|$ oracle queries from any state σ_i of A, impossibly compressing the random oracle H.

