ERGINES Modeling and Detecting Falsified Vehicle Trajectories Under Data Spoofing Attacks Jun Ying¹, Yiheng Feng¹, Qi Alfred Chen², Z. Morley Mao³ 1. Lyles School of Civil Engineering, Purdue University 2. Department of Computer Science, University of California, Irvine

1. Lyles School of Civil Engineering, Purdue University 2. Department of Computer Science, University of California, Irvine

3. Department of Electrical Engineering and Computer Science, University of Michigan

The Center for Education and Research in Information Assurance and Security

Introduction

- \geq CAV improves transportation system safety and efficiency but brings cyber risks.
- > Data spoofing attack is one major threat to both CAVs and infrastructure applications.
- > Existing anomaly detection algorithms are mainly designed to distinguish specific attacks.
- \geq A generic detection framework is proposed to identify abnormal trajectories from both known and unknown attacks.
- > Two representative attacks, estimated time of arrival (ETA) attack, and multi-sensor fusion (MSF) attack are modeled as known attacks.

- ETA attack generates falsified vehicle trajectories that have abnormal longitudinal behaviors.
- Vehicle under attack sends out falsified BSMs with longer ETAs.
- ETA attack leads to nonoptimal signal timing plans and increases vehicle delay at intersections.
- ETA attack is modeled as an optimization problem.

Modeling MSF Attack

> Domain knowledge-based feature extraction is applied to extract 13 features from vehicle trajectories, including both car-following and lane changing related features.

Numerical Study

 \geq The anomaly detection algorithm is tested on the V2X Application Spoofing Platform (VASP).

Detection Performance on two known attacks

	FP	FN	TP	TN	Detection rate	False alarm rate
SVM	7	1	144	196	144/145	7/203
Random Forest	0	0	145	203	145/145	0/203
Decision Tree	0	0	145	203	145/145	0/203

Detection Performance on six unknown attacks

Attack Type	Traj.	Accuracy (Avg.)			
	Count	SVM	Decision Tree Random		
				Forest	
Random position	246	1.0	1.0	1.0	
Random position offset	216	1.0	1.0	1.0	
High acceleration	225	1.0	1.0	1.0	

Vulnerability Profiling

Aggressive Spoofing

 \geq MSF attack leads to vehicle's lateral abnormal behaviors (e.g., deviation from the lane center)

> The original MSF attack is time-consuming and complicated.

> Only trajectory-level attack behavior is needed to model the attack's impact on traffic safety and mobility.

Vulnerability profiling stage

Aggressive spoofing stage

Low speed	225	1.0	1.0	1.0
Braking from communication	990	1.0	1.0	1.0
range EEBL	1055	1.0	1.0	1.0

 \geq The anomaly detection algorithm performs well in detecting both known and unknown attacks.

 \geq Other baseline models: plausibility check based anomaly detection, neural network classifier with linear connected layer, convolution neural network classifier.

Attack Type	Traj.	Accuracy (Avg.)			
	Count	Plausibility check	NN	CNN	
MSF and ETA	348	0.72	0.96	0.96	
Random position	246	1.0	0.99	0.99	
Random position offset	216	1.0	1.0	0.95	
High acceleration	225	1.0	1.0	0.95	
Low speed	225	1.0	1.0	0.95	
Braking from communication	990	1.0	0.77	0.83	
range EEBL	1055	1.0	0.82	0.82	

 \geq The proposed anomaly detection algorithm outperforms the baseline models.

