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Introduction

» CAV improves transportation system safety and efficiency but brings cyber risks.

» Data spoofing attack is one major threat to both CAVs and infrastructure
applications.

» Existing anomaly detection algorithms are mainly designed to distinguish specific
attacks.

» A generic detection framework is proposed to identify abnormal trajectories from
both known and unknown attacks.

» Two representative attacks, estimated time of arrival (ETA) attack, and multi-sensor
fusion (MSF) attack are modeled as known attacks.

Modeling ETA Attack
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» Domain knowledge-based feature extraction is applied to extract 13 features from
vehicle trajectories, including both car-following and lane changing related features.

Numerical Study

» ETA attack generates falsified vehicle trajectories that have abnormal longitudinal
behaviors.

» Vehicle under attack sends out falsified BSMs with longer ETAs.

» ETA attack leads to nonoptimal signal timing plans and increases vehicle delay at
intersections.

» ETA attack is modeled as an optimization problem.

» The anomaly detection algorithm is tested on the V2X Application Spoofing
Platform (VASP).

Modeling MSF Attack
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Aggressive Spoofing

» MSF attack leads to vehicle’s lateral abnormal behaviors (e.g., deviation from the
lane center)

» The original MSF attack is time-consuming and complicated.

» Only trajectory-level attack behavior is needed to model the attack’s impact on traffic
safety and mobility.

» Vulnerability profiling stage
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Detection Performance on two known attacks

FP FN TP TN Detectionrate False alarm rate
SVM 7 1 144 196 144/145 7/203
Random Forest 0 0 145 203 145/145 0/203
Decision Tree 0 0 145 203 145/145 0/203
Detection Performance on six unknown attacks
Attack Type Traj. Accuracy (Avg.)
Count SVM Decision Tree Random
Forest
Random position 246 1.0 1.0 1.0
Random position offset 216 1.0 1.0 1.0
High acceleration 225 1.0 1.0 1.0
Low speed 225 1.0 1.0 1.0
Braking from communication 090 1.0 1.0 1.0
range
EEBL 1055 1.0 1.0 1.0

» The anomaly detection algorithm performs well in detecting both known and
unknown attacks.

» Other baseline models: plausibility check based anomaly detection, neural
network classifier with linear connected layer, convolution neural network classifier.

Attack Type Traj. Accuracy (Avg.)

Count  “playsibility NN CNN
check

MSF and ETA 348 0.72 0.06 0.96

Random position 246 1.0 0.9 0.99

Random position offset 216 1.0 1.0 0.95

High acceleration 2925 1.0 1.0 0.95

Low speed 225 1.0 1.0 0.95

Braking from communication 090 1.0 0.77 0.83

range

EEBL 1055 1.0 0.82 0.82

» The proposed anomaly detection algorithm outperforms the baseline models.
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