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The objective of this research is to identify vulnerabilities within mmWave-based Human Activity Recognition
(HAR) systems to adversarial label poisoning attacks under supervised contrastive learning (SCL)
frameworks. We identify three types of label poisoning attacks on contrastive mmWave-based HAR systems
and propose a corresponding defense termed selective supervised contrastive learning (Sel-CL).
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e Adversary Model: Attackers aim to degrade HAR Sel-CL is highly effective against label flipping

system performance by manipulating activity labels in
the training dataset. This can be done through
intentional data mislabeling, acquiring mislabeled
data, or outsourcing training to a malicious third party.

¢ Random Attacks: Randomly alter labels in the
training dataset to other arbitrary labels.

e Across Trajectory Attacks: Modify labels of activities 1.0 1 8
to those of other activities with different trajectories. i || Gl o

e Inner Trajectory Attacks: Involve altering the labels 11
of activities to those of other activities with similar Lt
trajectories, aiming to hide malicious tampering.

attacks, outperforming traditional SL and SCL.
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