
WIP: Secure High-Performance Interrupts For
Secure High-Performance Processors

Abstract
The advent of User level Interrupts sparked
an advance in the workloads that benefit
from low latency notification systems. User
level schedulers, and high throughput devices
are the two main customers of such systems.
The lack of OS management in interruption,
can however cause security exploits. The
approach we propose for User Interrupt
handling eliminates the latency side-channel
identified in prior works, and reduces the
overhead of User Interrupts by a significant
margin.
Moreover, we investigate the potential
integration of hardware timers to further
enhance user-level preemptive schedulers.
While current user level schedulers dedicate a
core to generate interrupts on dedicated time
intervals, a hardware timer generates
interrupts in core, which reduces the constant
overhead of interrupt communication
bookkeeping, and the cycles spent spinning
for the next interrupt interval.

Berk Aydogmus
baydogmu@purdue.edu

Kazem Taram
kazem@purdue.edu

Security Concerns
Prior work has shown that interrupt handling systems are prone to latency
side-channels, arising from the need to wait for the instruction that is in flight to start
processing. As an example in the best case scenario of having to wait for a nop
instruction we are able to send %28 of interrupts generated from a core, while for the
scenario of having to wait for a longer latency interrupt we can reduce that rate to 8%
This, we hypothesize gives an attacker with knowledge of interrupt intervals or the
ability to send an interrupt, the chance to fingerprint the instructions and determine
the path a program takes. Furthermore because interrupts redirect the flow of
execution on demand, a speculative exploit might be possible.

Methodology
There are two established ways of handling interrupts in modern processors: Flush
strategy will empty the entire pipeline as soon as the interrupt arrives, while Drain
strategy will block the fetch stage and wait until all the instructions already in the
pipeline are finished. In both cases, the interrupt handling starts from an empty
pipeline. This is a complete waste of pipeline capacity. We propose an architecture in
which the pipeline has the ability to seamlessly continue the execution even when
interrupts are arriving.

On a more recent processor core (Sapphire Rapids), we get more significant decreases in overhead. In the extreme case, we get an
overhead reduction of 4.4% compared to Flush strategy. Further tests indicate that most of the overhead is caused by the interrupt
delivery bookkeeping code, implying in cases where there is no need for intercore communication, the overhead can be brought close
to zero. In fact, when we test this by performing a minimal interrupt delivery (no handler), we achieve an overhead of %0.02. This sets
the groundwork for proposing specialized notification mechanism that have near zero overhead, potentially revolutionizing a wide
range of use cases from high-performance networking (as alternative to polling) to more efficient preemption and scheduling to
more efficient synchronization with on-chip accelerators.

Performance Results
Our overheads for the proposed method and other methods modeled in gem5
simulator yield these results for a CPU model close to Ice Lake server CPUs.

2024 - ESS - QV3-8AJ - Secure High-Performance Interrupts For Secure High-Performance Processors - baydogmu@purdue.edu - Berk Aydogmus

