
Is

Termination

Legal?

Save Crash

Testcase

1

2

3

Fork Target

Feed Input

Monitor TargetYes

No

Target Terminated

AFL FORKSERVER

TARGET

MOTIVATION MAIN IDEA CHALLENGES

REHOSTING CHALLENGES

FUZZING CHALLENGES

MOTIVATION

TYPE – II SYSTEMS & THREAT MODEL

REHOSTING AS LINUX APPLICATIONS

Dynamic Analysis of Embedded Systems bring 
in many challenges such as:

• Requires Hardware Instrumentation

• Input Injection Difficult

• The curse of extreme diversity

Challenges to rehosting as Linux 
applications are:

• Retargeting to x86-64 architecture 

• Preserving Execution Semantics

• Handling Peripheral Interactions

• Fuzzing regular applications relies 
on program termination on every 
test case. 

• If the termination was illegitimate, it 

is considered as a crash.

Task1

Dispatcher

TaskTaskm
Third
party

SDK

A
p

p
lic

a
ti
o

n

C
o

m
p

o
n

e
n

ts

Library / OS Interface

Linux Application Hosting an Embedded system 

Challenge 2: Preserving Execution

Semantics

C
h

a
ll

e
n

g
e

 3
:

H
a

n
d

lin
g

 P
e

ri
p

h
e

ra
l

A
c
c
e

s
s
e

s
S

ta
n

d
a

rd

In
p
u

t

Invoke handler

Challenge 1: Building Rehosted Application

Task1 Task2 Taskm

RTOS Library / Kernel

Third
party

SDK

Portable Layer
MCU1 MCU2 MCUn

Peripherals

A
pp

lic
at

io
n

C
om

po
ne

nt
s

CLK GPIO SPI

Essential Non-Essential

Many existing approaches propose rehosting 
solutions, but they require one or more of the below:

• Real hardware

• Peripheral modeling

• Base emulator support

Our approach 
does not require 
these!

Contact :

RESULTS

PRELIMINARY RETARGETING EVALUATION

Of the region identified as 
peripherals:

• 51% of the addresses 
were correctly identified

• Considering Reserved 

regions, 89% are good to 
be fed with standard input 
data

Two Division By Zero Errors were found 
during fuzzing. Present in popularly used STM 
driver code, this has been fixed in their latest 

release. 

Note: A more comprehensive fuzzing of the 
rehosted applications is currently underway.

PurS3 Lab Read Idea paper here! 

Application 

components

RTOS Original Port

RTOS

MCU SDK

Compilation using

Original Toolchain

compile_commands.json

Application 

components

RTOS Linux Port

RTOS

MCU SDK

Gather Sources

& Compile Time Flags

Application 
components w/o

assembly

RTOS Linux Port

RTOS

MCU SDK w/o

assembly

Strip

Assembly

Compilation using

Clang Toolchain

Compilation 

Success?

Yes

No

Fix Using Prompt

Error Handler

Fully Automated Phase Semi Automated Phase

New Make

Config

x86-64 BinaryMCU-Dependent

Binary

Prompt Provided

Bear Capture

x86-64 Binary

LLVM IR

Identify MMIO Addresses

Instrument Loads and Stores

with MMIO Check

Emit

LLVM IR

MMIO Pages

MMIO Check:
Is Ld/St Addr in MMIO

Page?

LD: Load from stdin

ST: Ignore

LD: Load from Mem

ST: Store to Mem

x86-64 Instrumented

Binary

Yes

No

Instrument with

ASAN 

Stop due to

SIGSTOP?

Save ASAN

Crash Log

1

2

3

Fork Target

Feed Input

Monitor TimeoutYes No

Target Stopped

MODIFIED

AFL FORKSERVER

Timeout

exceeded?

Yes

No

MMIO LD:

AFL_LOOP(SIGSTOP)

Load from stdin

REAL-TIME TARGET

x86-64 Instrumented

Binary

x86-64 Instrumented

Binary with ASAN

AUTOMATED FRAMEWORK

AUTOMATED RETARGETING

AUTOMATED PERIPHERAL HANDLING

REAL-TIME FUZZING

Is

Termination

Legal?

Save Crash

Testcase

1

2

3

Fork Target

Feed Input

Monitor Target

Yes

No

Target (Harness) Terminated

AFL FORKSERVER

HARNESS

 AFL Loop

end? 

Yes

No

TARGET

FUNCTION

AFL_Loop():

FUZZING RESULTS

Automated phase:
• Sources and compile time flag information is 

gathered

• Portable layer of RTOS is changed to Linux one

• Assembly snippets are stripped.

Semi-automated phase:

• User iteratively fixes errors to get the x86-64 
binary.

Static Phase: 
• MMIO addresses are gathered. 

• Every load and store instruction is 
instrumented with an MMIO Check.

Dynamic Phase: 

• For MMIO Loads, input is provided from
standard input and MMIO Stores are 
ignored.

AFL++ Persistent 
Mode:
Allows continuous 

fuzzing of a target with 
new inputs without 
having to refork the 

target every time. 

How we achieve Real-time fuzzing:
• Every MMIO load stops the target using 

SIGSTOP.

• When the target is stopped due to this, 

forkserver feeds the next input and 
resumes target without refork.

#define RCC ((RCC_TypeDef *) 
0x40023800)
typedef struct
{
    uint32_t CR;    
} RCC_TypeDef;
void register_access(){
    RCC->CR | = 0x00000001;
}

MMIO in Code:

Type – II Embedded systems utilize a RTOS, 
which can have a portable layer interacting with 
the HW peripherals.

• Non-essential peripherals (like GPIO)
can send malicious data from the 
external world.

• Essential peripherals (like CLK) can 

send malformed data to the SW stack.

Threat 
Model:

PERIPHERAL HANDLING EVALUATION

Rehosted applications compiled with ASAN were executed on Ubuntu 20.04 
machine.

• The application tasks executed as expected without undefined crashes. 

• Accesses to peripheral regions did not fault.

• Execution proceeded as input was provided via standard input.

The main idea is to ”rehost” 
an embedded application to 
be able to execute on a Linux 

platform.

Many existing 
security analysis 
can be applied on 

these systems 
then.

EXISTING REHOSTING APPROACHES

LeMix : Rehosting Embedded Applications as Linux Applications For 
Effective Vulnerability Detection

Sai Ritvik Tanksalkar, Jayashree Srinivasan, Srihari Danduri, 

Paschal C. Amusuo, James C. Davis, Aravind Machiry

2024 - AI - PZM-I5M 


	Slide 1

