CERIAS

2024 - ESS - OEJ-TSQ - SoK: A Defense-Oriented Evaluation of Software Supply Chain Security - eabuishg@purdue.edu - Eman Abu Ishgair

The Center for Education and Research in Information Assurance and Security

SoK: A Defense-Oriented Evaluation of
Software Supply Chain Security

Eman Abu Ishgairt, Marcela S. Melaraf, Santiago Torres-Ariast

1 Purdue School of Electrical and computer Engineering , £ Intel Labs

The software supply chain comprises a highly complex set of operations, processes, tools, institutions and human factors involved in

>- | creating a piece of software. Several high-profile attacks that exploit a weakness in this complex ecosystem have spurred research in
E identifying classes of supply chain attacks. Yet, practitioners often lack the necessary information to understand their security posture
= and implement suitable defenses against these attacks. We argue that the next stage of software supply chain security research and
= development will benefit greatly from a defense-oriented approach that focuses on holistic bottom-up solutions. We introduces the
= AStRA model, a framework for representing fundamental software supply chain elements and their causal relationships. Using this
@ ' model, we identify software supply chain security objectives that are needed to mitigate common attacks and systematize knowledge
on recent and well-established security techniques for their ability to meet these objectives.
Actors: Any org anization, institution or individual involved with > 1: Evaluated software supply chain defense approaches mapped to security objectives
any aspect of the of software supply chain. Actors are often Technique Example Security Objectives
[identified via digital credentials such as cryptographic keys. Princif.als R OTP (1141 P.l P2 P3 P4 PS5
- usage-limited credentials - - - -
c]:, Artifacts: A unit of digital information that is required for the ephimeral S Fulcio [88] e . ©]
= creation, configuration and evaluation of a piece of software. An Sl transparency’ LONIG) " = ©
. I GH 61 - - -
® artifact is typically represented as a file or a collection: package, iy PR Sy L g o e .
LLl a Docker image, a source code file. separation of pripci;?al Erivilege 2-P Code Review [39] ’ 2) 2
O | Resources: Any software component, service or hardware Sissiolauthonzation 2 & =
% component used in the creation, configuration, or evaluation of g e i & o o
o an artifact. Examples of resources include Git, CI/CD services artifact signing! Microsoft Authenticode [127] © - -
S | such as GitHub Actions, or the OS used to build an artifact. CZ> $§}Zi?t§:;§?;§lcyf gihgest‘if:a[‘fg]amew‘“k[“7l S o
QO Steps: A step refers to a specific task or operation that creates, = | ledger-based systems' Contour [23] o o
evaluates or distributes a software artifact. In practice, < | staticanalysis’ Bandit [30] = = 0
. = dynamic analysis’ HARP [138] - ®
principals use resources to carry out steps. - T 1
esources
. § discretionary access control’ Linux file permissions [140] © - -
To reason about SSC defenses, we introduce AStRA model L || mandatory access control AppArmor [1] e - -
that represents a specific SSC structure as a DAG in which e rocas r 3 =
Artifacts, Step, Resources and Actors are vertices and the Steps R—
T, edgeS between them represent their relationships. Formal verification' Verifiable Compilers [85] ® - .
© Git repo Deterministic steps* DetTrace [97] ® - -
@) : : Step transparency SBOMs [126] - ® .
= source file Git repo (1) (t+1) Auth. Step Transparency’ in-toto [7] e o
A Step Consensus' CHAINIAC [6] ©O o
<{ c |
onsumes Topology TI T2 T3 T4 T5
E v supply chain layout integrity’ in-toto layouts [8] & - - ®
2 —Consumes Produces—— Artifact resource replication’ Mirrors [2] . ® - - -
Git Commit . dependency reduction Bootstrappable builds [41] - @ - -
«—Carries OUt_‘ Resource supply chain reproducibility’ Reproducible builds [81] - - ® []
: D Step @® = objective met; © = implementation-dependant objective-met; - = objective not met; T =has academic publicatio
Uses ., version control |
Project Maintainer system & Principal
with credentials
Our systematization leverages to represent any supply chain, and Completeness the ability to capture every threat for
the AStRA model and groups every supply chain modeled. To evaluate generality, we used our model to represent popular
defenses by each component of software supply chains that was a target for high profile attacks, figure below represent
S the software supply. For each SolarWinds SSC. To evaluate completeness, we perform a comparative analysis of the
_g component, as well as the DAG AStRA m.odel obje(.:hves., apd 72 at.t_acks listed |kn tlhe IQT Labs dataset. We explicitly map
S | topology as a whole, we identify each desired security objective to mitigated attack classes.
Q | various security objectives that CZ) / T o
T ' Consumes > ili roduces 2llodolr
+3 | are needed to mitigate common = WAARGP"S'“’W,_] = \Q;?:gzgg\gcgmesmmild Report | " Repository M
< | attacks and discuss different <C o e s |
academic and |ndUStry 3 8 o Produces—i Code %Uses~ Eelb(éODn S.eclgrity —
approaches seek to meet these § L = ren ot | REens ~CorlSumes—/ pysh VPT_, oy
ObJeCtlveS (Tab/e). m tuses_) . o ot L o Jfrog Xray CarriejOut RePOSitOry I
C To wuse AStRA model for Amazon
= | software supply chain security 8 / v\ produces| Dependency| | . Pmduces_w Built \ = e %
g assessment’ we need to ensure Developer Carries out H -1 : [—— \Cartes ou Enan) Argg%on CI/CD controller
E two propertles: _ _Genera"ty L Jfrog —TDepe.ndencyﬂ % Uses , ' Tekton standard J —{Built Container |
u>J generality as the ability of model Uses>. Avrtifactory . n | cucocontoler | CI/CD pipeline _ Images

PURDUE

UNIVERSITY

4

\q, o

CE

