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The software supply chain comprises a highly complex set of operations, processes, tools, institutions and human factors involved in

>- | creating a piece of software. Several high-profile attacks that exploit a weakness in this complex ecosystem have spurred research in
E identifying classes of supply chain attacks. Yet, practitioners often lack the necessary information to understand their security posture
= and implement suitable defenses against these attacks. We argue that the next stage of software supply chain security research and
= development will benefit greatly from a defense-oriented approach that focuses on holistic bottom-up solutions. We introduces the
=  AStRA model, a framework for representing fundamental software supply chain elements and their causal relationships. Using this
@ ' model, we identify software supply chain security objectives that are needed to mitigate common attacks and systematize knowledge
on recent and well-established security techniques for their ability to meet these objectives.
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