CERIAS

The Center for Education and Research in Information Assurance and Security

Centralized Hierarchical Cybersecurity Monitoring Towards Securing the Defense Industrial Base Supply Chain Vijay Sundararajan, Dr. J. E. Dietz Contact: <u>sundar17@purdue.edu</u>, +1-765-428-0879

Motivation

The implementation of the Centralized Hierarchical Cybersecurity Monitoring (CHCM) model was motivated by the critical need to meet stringent cybersecurity compliance regulations within the Defense Industrial Base (DIB) supply chain. CHCM aimed to provide a comprehensive, **centralized, near real-time solution** to ensure end-to-end protection of Controlled Unclassified Information (CUI) and mitigate cybersecurity risks effectively. Safeguarding CUI and confidential communications **throughout the supply chain**, from the DoD to its contractors/sub-contractors, is imperative to mitigate cyber threats. The model is applicable to any type of supply chain relying on information systems to transfer important information and data.

Working and Operation

- The CHCM network operated on a server-agent or master-slave hierarchical model, with master servers overseeing supply chain compliance and contractor servers monitoring and maintaining sub-agents' compliance.
- Endpoint telemetry was communicated to the CHCM server for analysis and decision-making, facilitating real-time feedback and automation through active and passive proxies.
- VPN access, Multi-Factor Authentication (MFA), and zeroknowledge end-to-end encryption ensured secure communication within the CHCM network, while firewalls and Access Control Lists (ACLs) were used to enforce security rules.
- Internal network testing, external penetration testing, log monitoring, and social engineering tools were employed to monitor, detect, and address vulnerabilities, with an emphasis on automation for prompt remediation.

Agent –Server Data Flow

Automation algorithm for external vulnerabilities

Algorithm 1 Automated Vulnerability Discovery						
Input: subnet	▷ Target subnet or IP range					
Input: intensity	Scan intensity level					
Input: out put Dir	Directory for results					
procedure VULNERABI	LITYDISCOVERY					
$nmap \leftarrow$ Initialize with subnet and intensity						
activeHosts \leftarrow Discover hosts with nmap -sn						
for all host in active	eHosts do					
$ports \leftarrow Scan ports$	orts of <i>host</i> with <i>nmap</i> -sV					
<i>vulnData</i> \leftarrow Execute Vulners script on <i>ports</i>						
end for						
Save vulnData to ou	t put Dir in XML or HTML					
POSTPROCESS(vuln)	Data)					
ALERTIFNEEDED(vi	ılnData)					
end procedure						
procedure POSTPROCE	SS(data)					
Parse and summarize	e data for report					
end procedure	-					
procedure ALERTIFNE	EDED(<i>data</i>)					
Check <i>data</i> for critic	cal vulnerabilities					
Trigger alerts for any	y findings					
end procedure						

Results From 9 DoD Contractors

Results taken in the fiscal year 2020 with regular periodic monitoring

TABLE I: Cybersecurity Monitoring Metrics for the Year2020 - Periodic

OrgNo	Internal	External	Log Alerts	SE	Compliance %
Org 1	6	4	16	3	65
Org 2	5	4	12	1	70
Org 3	8	3	23	3	60
Org 4	10	5	19	2	75
Org 5	6	3	8	0	72
Org 6	7	1	27	1	58
Org 7	8	2	34	2	68
Org 8	4	3	10	0	80
Org 9	7	2	7	1	85

Results taken in the fiscal year 2021 with CHCM framework

TABLE II: Cybersecurity Monitoring Metrics for the Year2021 - CHCM

OrgNo	Internal	External	Log Alerts	SE	Compliance %
Org 1	4	3	1	1	85
Org 2	3	1	3	2	88
Org 3	5	0	2	1	83
Org 4	2	1	0	0	92
Org 5	4	2	4	1	90
Org 6	5	3	0	2	82
Org 7	4	1	3	0	87
Org 8	1	1	0	1	94
Org 9	2	0	1	0	97

