
Adversarial Booking Attack for Autonomous
On-demand Mobility Services

Zengxiang Lei 1, Satish V. Ukkusuri 1
1 Lyles School of Civil Engineering, Purdue University

Background Preliminaries

Adversarial booking attack

Numerical experiment Key results

• On-demand mobility services
(OMS) provide online vehicle
scheduling and routing instructions.

• More controls are expected to be
added, e.g., autonomous driving,
V2X coordination.

• Little is known about the
vulnerabilities and associated risks
of these controls. though there is
real-world lessons from robo-taxis
pilots.

• We focus on a vehicle-
passenger matching algorithm,
the batch matching, used by
major ride-hailing service
providers such as Uber and Didi.

• Input: vehicle 𝑗 and passenger 𝑖
matching weights 𝑐!" within
certain time windows.

• Output: matched vehicle-
passenger pairs represented by
indicators 𝑥!".

The threat model:

• The attacker controls K compromised accounts that can send requests with
customizable coordinates.

• The attacker will send the requests then cancel it after 3 minutes, which is
assumed to be the threshold for the service provider to collect cancelling fee.

• The attacker’s objective is to disrupt the services by reducing the number of
successfully matched passengers and inducing traffic to a congested area.

• The attacker knows: the matching time window, the coordinates of vacant
vehicles, and a good approximator to the matching weights.

• The attacker may also know the coordinates of ongoing requests.

Simulation framework:
• Routing engine (https://github.com/Project-OSRM/osrm-backend) + SUMO

(https://sumo.dlr.de/docs/index.html).
• For each matching time window:
1. Information of vacant vehicles are collected from SUMO.
2. The attacker generates the fake requests based on the current vacant

vehicles’ coordinates and estimated request locations by solving the bi-level
optimization problem.

3. The platform solves the batch matching problem with travel time/distance
estimated by the routing engine, then updates the states of all requests and
vehicles.

Experiment settings
• Three workdays (2023/4/17-2023/4/19) in NYC with three time periods (AM

7:30-9:00, PM 18:00-19:30, and Night 2:30-4:00) with 30 min attacks in the
middle of 90 min simulation.

• Three attack strategies: Random generated attacks, Profit-driven attack by
considering the first term, and Congest-driven attack by considering both.

• Defense of the platform:
1. One account can only send one trip request at a time.
2. Following the cancellation of a request, the account must wait for 5 minutes

before submitting another one.

A bi-level optimization problem:

• Upper-level: decide the
coordinates of fake requests
(𝑢" , 𝑣")	within a polygon.

• Lower-level: batching matching.

• Solve it by reducing to single level.

minimize the successfully
matched real requests
and maximize the trips

through the target
(orange) area

Summary
• We investigate a threat model that can exploit the vulnerabilities in passenger-

vehicle matching.
• We develop a simulation framework to evaluate the attack’s impact to OMS

performances with the consideration of congestion.
• The results show that a limited number of compromised accounts can cause

significant reduction in service performances, which suggest sharing real-time
vacant vehicle locations would introduce significant risks.

• The Profit-driven attack is the most effective in most cases.
• However, when the congestion effect becomes particularly noticeable (e.g., in

PM), the Congest-driven attacks can yield the poorest service performances.

https://github.com/Project-OSRM/osrm-backend
https://sumo.dlr.de/docs/index.html

