
A Policy-Agnostic Language for 
Oblivious Computation

Qianchuan Ye (ye202@purdue.edu)
Benjamin Delaware (bendy@purdue.edu)

Department of Computer Science, Purdue University

Secure multiparty computation (MPC) techniques allow multiple parties to collaboratively compute functions over sensitive data in a privacy-preserving manner. MPC protocols use powerful 
cryptographic techniques to achieve these privacy guarantees, making them challenging for non-experts to directly use. To address this challenge, several high-level languages have been 
proposed to make writing such applications accessible. These languages typically require the programmers to embed their privacy policies into the application logic, making it hard to audit 
the policies, or experiment with different policies.

This poster presents our ongoing development of a privacy-preserving language, Taype, that decouples privacy and functionality concerns. Two key ingredients of this language are oblivious 
algebraic data types and tape semantics. Oblivious algebraic data types are a form of dependent types with oblivious constructs, that can be used to modularly encode complex privacy 
policies for structured data. Tape semantics then enforce these policies during execution, enabling applications to modularly compose policies and programs written in a conventional way 
without compromising privacy.

Abstract

Privacy and performance tradeof

max height spine spine w/ feat. all

100

101

102

103

ru
nn

in
g

ti
m

e
(m

s)
(l
og

sc
al

e)

small

very sparse

eighth sparse

full

Our language allows the programmers to explicitly make tradeoff between privacy and 
performance, by composing the functionality with different policies (i.e. public views).

Example: decision tree classification.


• Public views: maximum height, the spine, spine including the feature index of each
node, and the whole tree

• The more information we are allowed to disclose, the better performance we get

• Quantify how much their performance differ, which may vary in different MPC
protocols

• Quantify how performance varies in tree density

• Importantly, the decision algorithm is agnostic of the actual public views, allowing
for swapping privacy policies without any changes to the program logic

Our security type system and execution model guarantee privacy by construction.
Obliviousness theorem

[1] Qianchuan Ye and Benjamin Delaware. Oblivious Algebraic Data Types. POPL 2022.
https://doi.org/10.1145/3498713
[2] Qianchuan Ye and Benjamin Delaware. Taype: A Policy-Agnostic Language for Oblivious
Computation. PLDI 2023. https://doi.org/10.1145/3591261
[3] Qianchuan Ye and Benjamin Delaware. Taypsi: Static Enforcement of Privacy Policies for
Policy-Agnostic Oblivious Computation. OOPSLA 2024. https://doi.org/10.1145/3649861

References

This work is partially supported by Cisco Systems and Intelligence Advanced Research 
projects Activity (IARPA).

Acknowledgements

Example: how to create a standard dating app
• Personal profile: include personal information like gender and income

• Preference: modeled as predicates over profiles of their own and their potential
soulmate’s. For example, the sum of their income is greater than a certain amount

DA
TA

• Main functionality: decide if the two are a good match

FU
N

C
TI

O
N

AL
IT

Y

It turns out no one wants to use our dating app, because they are not willing to reveal their personal 
profiles or preferences! Thankfully, with our language Taype, we can turn a standard dating app into 
a private one in just a few simple steps!

Example: how to create a private dating app

Step 4: Profit!

Step 1: Encode a private version of the data types, with the desired policy, as oblivious algebraic 
data types (OADT).


• An oblivious algebraic data type is a dependent type that takes a public view, specifying what
information can be disclosed

• Type body represents the shape of the private data

• Example: oblivious predicate. Public view is the maximum depth of the AST

• We can use other public views too, because oblivious types are independent of the functionality

Step 2: Define section and retraction functions for the oblivious types.


• They are essentially conversion functions, similar to encryption and decryption

Step 3: Compose the functionality and the desired privacy policy. Voilà, now we have a private 
soulmate matching function!


• Key idea: first “decrypt” all private input, and then run the public functionality, and finally encrypt
the result

• Worry not! This does not compromise privacy thanks to our tape semantics, even though we
seemingly have revealed the private input

Even Better: A new version of this language (to appear in OOPSLA 2024) allows for simpler policy 
specifications and better performance. We can do this now:

2024 - AIP - FBV-QER - A Policy-Agnostic Language for Oblivious Computation - ye202@purdue.edu - Qianchuan Ye 

mailto:bendy@purdue.edu
mailto:ye202@purdue.edu
https://doi.org/10.1145/3498713
https://doi.org/10.1145/3591261



