Snooping Pay-over-the-Phone Transactions over Encrypted 5G/4G Voice Calls
Jingwen Shi*, Shaan Shekhar*2, Guan-Hua Tu1, Chunyi Peng2
*Equal contribution 1Michigan State University 2Purdue University

Attack Overview

Snooping Pay-over-the-phone (PoP) transactions in the air
- **Normal use scenario:** UE (say, a mobile phone) calls an Interactive Voice Response (IVR) system and makes a credit/debit card transaction to pay a bill.
- **Attack:** deploy a **radio sniffer only** to infer such sensitive and confidential payment transactions

Attack Solution

- **Detecting 5G/4G voice calls over encrypted traffic**
 - **Tiny packets (≤13 bytes) only in voice,** not other traffic
 - **Ironically, due to 5G/4G enhancement techniques**
 - Adaptive speech codec (AWR): lower rate for noise
 - Comfort Noise (CN): background noise in the silence to make the other party hear something and avoid call termination
 - Robust Header Compression (RoHC): compress very small PDCP packets that carry voice calls
 - **Detecting IVR calls using IVR-specific fingerprinting**
 - DTMF-like tone: very brief, different from human speech
 - Primarily one-way traffic: IVR talks and human listens
 - Purpose-specific call patterns: depending on IVR menu
 - **Detecting PoP transactions over payment-specific patterns**
 - Credit/Debit Card Number (15 -- 16 digits)
 - Expiry Date (4 digits)
 - Security Code (CVV) (3 – 4 digits)
 - Zip Code (5 – 9 digits)
 - Note: each digit creates one DTMF tone (one key touch)

Attack Evaluation

- **Ethics: all in controlled experiment (victims all owed by us)**
- **1000 radio traces from 30 companies**
 - LSTM + CNN: >93% accuracy (except cut-off)

Contact Faculty

Chunyi Peng (CS)
chunyi@purdue.edu

Know more about the MSSN Lab (Mobile System, Security and Networking)