CERIAS

The Center for Education and Research in Information Assurance and Security

A Cybersecurity Testbed for Connected and

Autonomous Vehicle Systems ﬁ@\&%

- VN

Urban Mobility, Networks and Intelligence Lab

Zengxiang Lei ', Ruichen Tan ', Satish V. Ukkusuri
! Lyles School of Civil Engineering, Purdue University

Overview

* The Transportation Cybersecurity and Resilience Center (TraCR) is developing a cybersecurity testbed for connected and autonomous vehicle (CAV) systems.

 The goal of this
 To achieve this,

testbed is to comprehensively evaluate the impact of cyberattacks on CAV systems and assess the efficacy of defense algorithmes.
the testbed incorporates the full life cycles of transportation services (including private vehicles, ride-hailing, and public transit) with realistic data streams.

Decision to Performance

Decision actuation

Feature/Prediction to Decision

Information to Feature/Prediction

Feature extraction and prediction

Human-machine
interaction

Centralized
coordination

Decentralized
algorithm

Historical
data

* This poster shows the testbed design and current development progress.

Testbed design

* Ourframework comprises three key components: simulator, data « Operationalalgorithms
stream, controller. Co-simulation coordination

. i . i, i, i i . i Kafka consumer APIs
S.lmula’For. We use METS-R SIM for lgrge scale multi mpplal traffic Remote controller . giricitrl;/:s;)n;z;nt Bt Sleae
simulation and CARLA for photorealistic sensor and driving (METS-R HPC) P g (Kafka)

simulation. This combination ensures comprehensive testing
environments.

Data Stream: This Kafka-based component can model the data
stream explicitly and expose it to potential attacks like DoS and
data spoofing. This also allows us to separate the logics of data

~
@g\\
I'eo

&, RS
Ve
4 ~
D/S

Attacker

. .. , o , Two-way Kafka
processing, decision generation, traffic §|mulat|op, and attacks. communications Producer
Controller: The controller serves as the intermediary between by WebSocket APls

multiple simulation instances and the data stream, this
framework guarantees strict synchronization. By broadcasting
simulation time among the simulator, data processor, and

attacker, it enables sensible testing of attack algorithms with any

level of computational costs.
Open source:

METS-R SIM: https://github.com/umnilab/METS-R_SIM.git

METS-R HPC: https://github.com/umnilab/METS-R_HPC.git
Visualization:

nttps://engineering.purdue.edu/HSEES/METSRVis/

Simulation 1
(METS-R SIM)

Simulation 4
(CARLA)

Simulation 3
(METS-R SIM)

Simulation 2
(METS-R SIM)

Use case examples

Testing attacks against the online routing algorithm for CAVs.

ws://localhost:53605 : {"TICK":276,"
{}
ws://localhost:53605 :

{}
ws://localhost:53605 :

{}

ws://localhost:53605 :
{TopicPartition(topic="1ink energy"
amp_type=0, key=b'-403552170', value={'vid': 35729, ‘utc_time': 275.9, 'veh type': 1,
ers=[], checksum=None, serialized key size=10, serialized value size=94, serialized header size=-1)]}
ws://localhost:53605 :

{}

TYPE" :"STEP" }

{"TICK":277,"TYPE" :"STEP"}

{"TICK":278,"TYPE":"STEP"}

{"TICK":279,"TYPE" :"STEP"}

{"TICK":280,"TYPE":"STEP"}

114042 2024-03-21 14:37:48,554 INFO
"131,10",
"131,23",
"131,31",
"70,131",
"54,140", "38,140", "54,131", "137,140", "250,140", "49,180",
"209,131", "155,180", "227,180", "6,131", "153,131", "209,140", "243,140", "101,180", "6,140", "180,17", ...],

: Received message {"TYPE": "CTRL routingTaxi",

The attacker fabricates the link travel
time and energy consumption data.

, partition=0): [ConsumerRecord(topic='link energy', partition=0, offset=32591, timestamp=1711632536460, time
"link _energy': 0.10931387238947775, 'road_id': 107151}, he

"OoD": ["47,140", "131,13", "131,12", "131,11",
"56,180", "131,17", "131,16", "131,15", "131,14", "131,19", "131,18", "252,180", "72,180", "131,20", "171,180", "131,24",
"131,22", "131,21", "131,28", "131,27", "131,26", "218,131", "131,25", "139,180", "131,29", "137,131", "146,131",
"131,30", "8,180", "131,35", "131,34", "227,140", "131,33", "131,32", "131,39", "131,38", "131,37", "131,36", "162,180",

"146,140", "47,131", "63,180", "131,42", "131,41", "243,180", "131,40", "131,46", "131,45", "131,44", "131,43", "227,131",

"250,131",

"72,140", "153,140", "38,131", "171,140", "243,131", "148,180",
"result": [7, 16, 15,

* Runningin an interactive environment. y

v

sim_client.send_step message(sim_client.current_tick)

* ws://localhost:54163 : {"TICK":2,"TYPE":"
{"TICK":3,"TYPE":"
{"TICK":4,"TYPE":"

{"TICK":5,"TYPE":"

STEP"}
STEP"}
STEP"}
STEP"}

ws://localhost:54163 :
ws://localhost:54163 :

repare_sim_dirs(confi
S o (g) ws://localhost:54163 :

run_simulations(config)

rdcm = RemoteDataClientManager(config)

my_msg = {}

my_msg["TYPE"] = "QUERY_taxi"
my_msg["ID"] = 36874

sim_client = rdcm.rd_clients[9]

* waiting until the server is up at ws://localhost:54163
Created all clients!
sever is active at ws://localhost:54163,
ws://localhost:54163 :
ws://localhost:54163 :

sim_client.send_query message(my_msg)

running client.. Y

connection opened
{"TICK":0,"TYPE":"STEP"}

* ws://localhost:54163 : {"vid":36874,"pass _num":0,"origin":140,"x":-73.87362864289098,"y":40.774

What’s next?

11, 14, 16, 14, 11, 14, 17, 11, 14, 6, 15, 16, 14, 14, 14, 12,
8, 11, 19, 15, 1@, 19, 5, 7, 6, 2, 2, 3, 15, 12, 19, 6, 14, 1,
19, 6, 3, 6, 0, 8, 12, 11, 1@, 8, 6, 15, 18, 1, 9, 15, 16, 13,

7, 18, 17, 13, 7, 18, 2, 16, 1, 8, 1, 6, 8, 3, 16, 7, 9, 15, 16, 9, 17,

114042 2024-03-21 14:37:48,554 INFO : Received route result!
114043 2024-03-21 14:37:48,555 INFO
114078 2024-03-21 14:37:48,590 INFO
114141 2024-03-21 14:37:48,653 INFO

114217 2024-03-21 14:37:48,729 INFO

: Received message {"TYPE"
: Received message {"TYPE"
: Received message {"TYPE"
: Received message {"TYPE"

19, 12, 13, 12, 12, 14, 9, 12, 9, 1, 11, 5, 16, 14, 14, 14, 4, 16, 18, °
4, 1, 6, 15, 1@, 11, 16, 13, 1, 2, 14, 1, 12, 17, 19, 5, 18, 7, 5, 9, O,

17, 14, 19, 8, 17, 1, 17, 16, 15, 12, 12, 5, 16, 16, 17, 5, 9, 5, 14, 9,

12, 10, 9, 8, 15, 9, 12, 14, 17, 18, ...]}

Routing decisions
become different.

: "STEP",
: "STEP",
: "STEP",
: "STEP",

"TICK": 1000}
"TICK": 1001}
"TICK": 1002}
"TICK": 1003}

Currently, we are working on developing an extensive set of APIs for query/control
the simulators.

* The next stepisto leverage the platform to test typical attacks (e.g., GPS spoofing)

against CAV systems and applications.

PURDUE

UNIVERSITY

p

https://github.com/umnilab/METS-R_SIM.git
https://github.com/umnilab/METS-R_HPC.git
https://engineering.purdue.edu/HSEES/METSRVis/

