ERAS

The Center for Education and Research in Information Assurance and Security

EUREKA: A General Framework for Black-box Differential Privacy Estimators

Yu Wei* Yun Lu Malik Magdon-Ismail Vassilis Zikas Rensselaer Polytechnic Institute University of Victoria Purdue University Purdue University yunlu@uvic.ca magdon@cs.rpi.edu yuwei@purdue.edu vzikas@purdue.edu

Overview

Question

Differential privacy (DP) is a key tool in privacy-preserving data analysis. Yet it remains challenging for non-privacy-experts to prove the DP of their algorithms. Do we have a methodology for domain experts with limited data privacy background to empirically estimate the privacy of an *arbitrary* mechanism?

Our Results

- We showed the impossibility of the above task for unrestricted input domains, and introduce a natural, application-inspired relaxation of DP which we term relative DP.
- We proved *a new link* between the problems of DP parameter-estimation and Bayes optimal classifiers in ML.
- We propose *a general framework* for constructing and analyzing black-box DP estimators. The instantiated estimators achieve two desirable properties:

• *black-box*, i.e., they do not require knowledge of the underlying mechanism

• They have a theoretically-proven accuracy

Our Result in Details

Theoretical-

Consider the set of mechanisms $\mathcal{C} = \mathcal{U}^m \mapsto \mathsf{R}^d$ whose output distribution has a density. Let $T \subseteq \mathcal{U}^m$ be any set of databases with size less than t. Let h be a kNN classifier which is constructed from n samples and $k = \sqrt{n}$. Then there exists a n_0 such that for all $n > n_0$, the left-hand side algorithm is a (α, β) -Approximate Relative DP Estimator for C, where $\alpha = 24e^{\epsilon}c_d\sqrt{\ln(8tm/\beta)/n} + 2e^{\epsilon}\sqrt{\ln(8tm/\beta)/n}.$

proven Accuracy

Eureka Framework: construct a estimator from any binary classifier

- Given a tested mechanism M, a binary classifier h and a database set T, and a privacy parameter ϵ
- 2. For any $D_0, D_1 \in T$, do the following
 - 1. Set r.v. $X = M(D_0), Y = M(D_1)$
 - 2. Set binary classification problem with likelihood $X, [Y]_{\epsilon}$, uniform prior and 0/1 loss function
 - Estimate the risk R(h) over this classification problem 3.
 - 4. Use *our link* to convert the estimate in Step 3 to δ'_{D_0,D_1}
- 3. Compute $\delta' = \max_{D_0, D_1 \in T} \{\delta'_{D_0, D_1}\}$
- 4. Claim mechanism M satisfies (ϵ, δ', T) relative DP.

Reference

Yun Lu, Malik Magdon-Ismail, Yu Wei and Vassilis Zikas. EUREKA: A General Framework for Black-box Differential Privacy Estimators. S&P 2024.

