‘ \ Kyle Harvey,

Nicholas Bogan,

The Center for Education and Research in Information Assurance and Security Professor Gustavo Rodriguez-Rivera

Ove rV' (SAVY M Ot' Vat| on Command Line Arguments

Accept command line arguments which dictate how to run

ASMProfiler

Existing profilers point to bottlenecks in C code and higher level languages Oumat

- Fetch data from the .text section of the binary using objdump - Few profilers exist at the level of Assembly language

_’

Terminal

- Execute binary with the addition of a function call before and after main that generates a - Many programmers would like to find out which instructions take the most time, even if

histogram file the instructions are generated from C code by compilers

Instructions, Addresses, Labels

Objdump

- Main hook in shared library Many programmers would like to also use the profiler for programs written in Assembly

Anonymous
Web Server

- Manual function calls with object file code

- Combine histogram with data from addr2line, source code, and data collected before - Many programmers would like to view the output in a user friendly manner that makes : Combined Data

execution by objdump clear the association between Assembly code and higher level programming constructs

File and

- Display data as an easy to understand web page with enhanced functionality, or as Many programmers would also like to run the program at full speed without having to Line of Each Address
Addr2Line

simple terminal output instrument the code . datavis.html
Targeted index.html,
combined data
Exocitabia (JSON Payload)
Beginning of Text,

Python3 Script Options Python3 Script Options (cont'd) End of Text, and

ASMProfiler Program Name

Array of Dictionaries

harvelo6@data:~/ASMProfiler$ ./ASMprofiler —help Lb
usage: $ ASMprofiler <binary_name> [options] - | rary
Do this to profile a C program: __domaln DOMAIN Functions

1) Link against ASMprofiler.o or ASMprofilerAuto.so using GCC or use ——preload /path/to/ASMprofilerAuto.so

2) If using ASMprofiler.o, call ‘start_histogram® as the first expression in main

3) If using ASMprofiler.o, call ‘print_histogram® as the last expression in main

e This option is added to show a domain name that is not localhost when

4) In the terminal do './ASMprofiler <binary_name>"

This python script will provide profiling information.

presenting the user with a link to click on for --web

Source Code at Each Line

For more information call this program with -h or —help

positional arguments:
rootname rootname of the file, generally the same name as the binary executable

e Useful when SSH’d into a remote server such as data . Source Code

options:

-h, —help show this help message and exit

-w, —web Starts a web server with a random port to display advanced information
-z, ——Zeros Shows all instructions, even if they took(effectively) zero time

-1, —library Prints out the function definitions you need to call as described in help
-c, —cline Prints out the c code, if it is available

5’ PRELOAD, —preload PRELOAD PROBLEMS OUTPUT DEBUG CONSOLE IERMINAE PORTS

Use ld_preload to run on a program not compiled with our functions called, still must be compiled with -no-pie. Pass the absolute path to the shared object
—d DOMAIN, —-domain DOMAIN

put in a custom domain name for —web
-a [ARGV ...], —argv [ARGV ...]

after_this argument pass the command line arguments to your program

harvelbb@data:~/ASMProfiler$ ./ASMprofiler -w —-d data.cs.purdue.edu ./simpleMultithreading 5 L
Profile and output available here: http://data.cs.purdue.edu:34407/e86d99d8-8164-49d3-8fe8-3d61451985bb/ ‘hist file

Server Logs:
i Addresses and Time

JSON payload, beautified by

Python3 SCI’Ipt OptIOnS (Cont,d) https:/jsonviewer.stack.hu/

Display Data(Datavis)

Python3 Script Options (cont'd)

--preload PRELOAD

objdump Usage Before Execution

--web - objdump is used to get all of the bytecode, ASM instructions, function/label

names and addresses inside of the .text section of the binary

- This is stored in a python dictionary for use in later

- The Python3 program passes the beginning and ending addresses of the .text
section to our C library as environment variables when it calls the binary as a

Hosts an anonymous web page on all available interfaces

e This option is added to attempt to use LD _PRELOAD to load the shared

library with any program compiled without our library

e Uses a uuid in the URL as well as a random port to ensure no

collisions or inadvertent data exposure if ran on shared machine e The shared library simply gets a main hook, and calls start_histogram()

Hosts a webpage that requests a JSON payload from local before main and print_histogram() after main, generating a .hist file to be subprocess
. _ prserrey ic 89 mov  Wr1S,kedl
machine consumed by the Python3 script 43caan: <8 70 7c 7o 11 Call  diene < pthread_mutex_unlock
. ) .. ) _ aacdss: a5 85 44 24 56 o el T
o JSON payload is available to be used by other applications and is user oy g e e Main hook skeleton code found at 322322; 64 43 2b 04 25 28 00 fub %fsmxzs,»ﬁrax.
viewable by appending “1json’ onto the URL of the webpage @ [ Jdump . . 4acdes: 28 83 ca 68 T Sk wrey —reereke Bhereamla
_ _ _ . our_time : 89250 https://qist.qithub.com/apsun/1e144bf7639b22ff0097171fa0f8c6b1 P e e Fiddh el o e
e This option automatically enables --cline in order to get source time_time : 89385 Jgededs - pop e
output : null 322333§ 3} gg 528 :::izat
code information if available ion dacdre: - e
4aed77: e8 f4 7f fa ff call 456d70 <__stack_chk_fail>
Seeilzey f2 8t 2= T ek WO

Binary Execution

Display Data(Grouping by Function Functionality) Display Data(Grouping by C Source Line Functionality)

- The binary is executed from the Python3 script as a subprocess, passing the
Profile Profile be'ginning-and ending gddresses of the .text section as well as other data
using environment variables

Actual CPU Time: 1380ms - start_histogram() is called before or at the very beginning of main
Actual CPU Time: 1380ms . :
—— - Fetches the environment variables

:] | = - Initializes histogram array
Sort By Time Group By Source Line _ _ -
) ] el

Function Time Percentage Instruction Source - p ri nt_h i StOg ra m ()
idivl -0x1c(%rbp) Address Time Percentage Instruction Label  Source - Called after or at the ve ry en d of main
Address Time  Percentage Instruction idivl -0x1c(%rbp) - Prints the histogram array data to a .hist file

4198824 370ms 27.01% sum +=1i/j;

Profiled Time: 1370ms Profiled Time: 1370ms

/homes/harve106/ASMProfiler/simpleMultithreading.c:20 Address Time Percentage Instruction after execution

=ili: /homes/harve 106/ ASMProfiler/simpleMultithreading.c:20 ) . i i
i 4198824 27.01% a198824 270 1971% idivl -0x1¢(%rbp) task_01 - Data from POPEN is used to calculate the total cpu time to compare to the total time in the
4198912 10 ms 0.73% i for (j = 1; j < max; j++) 100 add

4198895 360ms 2628% sum+=1i/j; ms sum +=1i/j; - . z : - . - -
profil histogram so the user can determine if they are missing large amounts of execution time
4198829 0 7.30% Gorax,-0x 10(%rbp) due to dynamic library usage

task_01 760 ms 5547% task_01

4198840 20 ms 1.46% « for (int j = 1; j < max; j++)

/homes/harve106/ASMProfiler/simpleMultithreading .c:51

610ms 44.53% mov -0x20(%rbp) ,%eeax /homes/harve 106/ASMProfiler/simpleMultithreading.c: 18

4198840 ( cltq task_01
for (int j = 1; j < max; j++)

sum +=i/j;

/homes/harve 106/ASMProfiler/simpleMultithreading.c:33
4198895 ° mov -0x18(%rbp),%eax task_01
: sum +=1i/j;

/homes/harve 106/ASMProfiler/simpleMultithreading.c:31

4198912 mov -0x14(%rbp) eeax o ' Example -hist file
—_— Combine Histogram with objdump Data

= static-pthread-mutex-test.hist

. 1 x401852 50ms
- Because x86_64 Assembly is CISC, each two 3 Exms_r,e T
Example Usage Example Usage byte bucket profiled by profil() may only be a part 3 0x401862 150ms
82 # multiply index with 8 . ) . 4 0x401864 60ms
- The instructions taking the most time are examined and are considered for - Success 83 Exa m Ie U Sa e of a smgle assembly iInstruction 5 0x40186¢ 100ms
optimizations - This optimization saved 340 ms 84 movq -8(%rbp), %rle p g S : T e : . 6  0x40187c 20ms
- The top time taking instruction is an array deref, and if the instructions around it are viewed, 85 - ummlng mu tlp € lines o t e IStOg ram in oraer 7 0x401884 10ms
they take a substantial amount of time as well 86 movqg (%rl1@,%rbx,8), %rbx . . . . 8 0x401888 100
If lines 83-86 can be optimized to under 920ms, time will have been saved to get the tlme for One Assembly InStru Ctlon IS % HE
In this case, the optimization will be the replacement of this and other similar instructions with F 1 h 1 - h h f I h I H f H k 9 0x40188e 16ms
A i - irst, the program is ran with the profiler and the list of top time taking necessary 10 ox4018ds 20ms
. /homes/harve 106/ ASMProfiler/heapsort-test s:80 - - - - - 11 0x4018e4 70ms
79 #local vars 4198889 10ms  023% mov -0x28(Grbp) Gerbx o s od =
R instructions is analyzed To keep this linear time amortized, a destructive 1B  BeARIen Db
rr ff 8893 10 ms 0.23% mov -0x8(%rbp) %r10 1 1
B2 ¢ mtiply index witn 8 : search method that treats the profile from the _hist 13 ox4018ea  Sems
83 imulq $8, %rbx ) . o . . 14 0x4018f2 80ms
84 movq —8(%rbp), %r10 o e o= I Profile file as a stack is used 15 @x4018fc 10ms
85 addq %rl@, Srbx
8¢ movg (%rbx), %rbx Profiled Time: 4280ms 16 0x401902 20ms
Actual CPU Time: 4300ms 1; gxigiggg ;gms
X ms
19 0x40197e 70ms
_ [ Group By Source Line
Example Usage 172 # nultiply index with 8 Example Usage
173 imulq $8, S%rbx Address Time Percentage Instruction Source
. 174 movq -8(%rbp), %rl@ 'homes/harve 106/ ASMProfiler/heapsort-test.s:86
- Asimilar case at 175-177 175 ’ addq %r1@, %rbx - Success BIE 8 mltisve tnaee wite @ Tiaase P e T h harve 106/ASMProfiler/heapsort-test s:86
- Time to beat for this operation is 350 ms movd_(Nrbx) . Avbx 173 movq (Srbx), %rbx
174 movq -8(%rbp), %rld /homes/harve l06/ASMProfiler/heapsort-test s: 150
175 4199051 180 ms 21% mov %rbx -0x20(%rbp)
176 movqg (%rl@, %rbx, 8), %rbx movq %rbx, -32(%rbp) - . . - - L]
Combine Existing Profile with addr2line Data and Source
o D6/ASMProfiler/heapsort-test.s:175 AL add %r10, Srbx continue_loop_0 ndbl St Aorhn
AT . — ey — e e i - ; i AR - addr2line is called with one address per assembly instruction profiled
% x movqg (“erbx), “erbx

movg (%r10, %orbx, 8), %

- The data from addr2line is then parsed and the source code file is read,

adding the content of each line to the profile data structure

- Alist of the files the Python3 program has already opened is maintained and read so as not to
have a file open and close for each assembly instruction

- The resulting data structure has each time-taking assembly instructions’
address, bytecode, ASM code, source-code line, source-code content,

Example Usage Example Usage

Example Usage

e e 2 o e, Sl . function, and time taken {
- Examination of unconditional jumps T S e - These can be eliminated "address": 4200524,
- Instructions are called frequently 153  end_loops_4: "memory": "eb 3d b ",k
: i ; . 154 j d_loops_3 & = - " x "instruction": "jmp 40188b <task_01+0x76>",
-+ lipeeipntnestsiare s el e 150 movq %rbx, -32(%rbp) - 1000 runs of the optimized and unoptimized version were ran and the “function”: "task 01",
niine 156 end_loops_3: p L § "time": 20,
Simplified 157 #local vars 152 1 tart 4: "percentage": 0.043706293706293704
Or eliminated 158 |  movq -32(%rbp), %rbx 153 :n:e{Zozg ; ave rage WaS ta ken "{ile": "égomes/harvelOG/ASMProfilér/static—pthread—mutex—test.c",
g — - " inell: n ll’
154 L - = - et for (int 3§ = 1; ] <'max; j+t)**
- Unoptimized: 4.292475 )

4199044 140ms 2.99% . i ) e 156 end_loops_3:

=
- N Optimized: 4.08495
4198990 130ms 2.78% g if_start_3 = &
L rbx

Momes/harve 106/ ASMProfiler/heapsort-test.s: 154

4199046 130ms 2.78%
jmp end_loops_3

Display Data

Example Usage Example Usage

- The data is then displayed through either the command line or the web
interface

- Similar case at 106, 109 106 | jmp end_loops_2 - Gone
107 else_start_2:
108 end_loops_2:

Conclusion

105 'movq %rbx, —32(%rbp)

jmp en oops 106
123 Llseissartiﬁ Pt 107 else_start_2: . . ) .
B i RIS - AS M p rOfI Ie r IS u Sa b I e to O ptl m |Ze a Sse m b I y a n d C p rog ra m S harvel06@datai~/ASMProfilers ./ASMprofiler ./simpleMultithreading =

109
110 else_start_1:

\Program Outpul:

None

- ASMprofiler was used in computer architecture class by over 500 students to

111 end_loops_1: 0x4011a8 230ms 16.55% idivl -@xlc(%rbp) task_01
0x4011ad 120ms 8.63% add %rax,-0x10 (%rbp) task_01
6/ASMProfilcr/heapsort-test s:106 112 #local vars t L h h t bI d . t gx:gﬁbi igms g.;g: cltg ot (srbo) :ast_g}
A0 me 0249 Jepp 0Nz - ! e Op “ I ||Ze a aS a e IC Iona ry 0x401113 210ms 15.11% 1divi :0:14(%:h:)' o t::k:@l
0x4011f6 10ms 0.72% cltq task_01
e R e > /homes/harve 106/ASMProfiler/heapsort-test.s: 109 . : = - gx:gg;a Allzms g.gg: agg\ :5a;,—gxigzzrgp: :ast_gi
o cndJop.1 - Students found that most of the time of the hash function was spent in the modulo operation min r e kel
0x40124f 10ms 0.72% mov —-0x20 (%rbp) , %eax task_02
. - . . - - - - 0x401253 180ms 12.95% idivl _QXIC(%rbpz% i ;ast g%
0x401258 90 6.47 dd »—0x10 (Sri ask_
- Was optimized by approximating the modulo by shift operations and subtractions using a o Sam fov  ociaron) e
0x40129a 10ms 0.72% mov -0x18(%rbp) ,%seax task_02
8x40129%e 240ms 17.27% idivl -0x14(%rbp) task_02
0x4012a3 116ms 7.91% _ add %rax,-0x10(%rbp) task_02

prime number close to a power of two

Example Usage - sko SEcier Example Usage
55 #local vars
- Arithmetic operations can often be simplified ij movq —24(%rbp), %rid - This simplification is fast enough that line 65 no 54
- In this case the program is doing 2 * %r10 + 2 58 # * longer appears in the profile S5 j#local vars
. . . imulq %r1@,%rbx 56 movq -24(%rbp), %ri@
with the result ending up in %rbx 60 - 57
: f e < s A 61 # push 2 58 # *
- This can be simplified using lea instruction e Givg £ aiie =5
because the multiplication is done by two 63 60
64 Ly 61 # push 2
65 addq %ril@,%rbx 62
4198830 7O0ms  1.68% . ov S0x2,%rbx continue 64 # +
lea 2(,%r10,2), %rbx

106/ASMProfiler/heapsort-test 5:62
4198845 20ms  0.48%
10

106/ASMProfiler/heapsort-test 5:65

4198852 110ms 2.64%
addq %rl0,%rbx

B oo




