CERIAS

The Center for Education and Research in Information Assurance and Security

Osvaldo Arreche¹, Tanish Guntur², Jack Roberts³ and Mustafa Abdallah¹

¹Indiana University-Purdue University Indianapolis, Indiana, USA oarreche@iu.edu, tguntur@iu.edu, robertjaw@iu.edu, mabdall@iu.edu

Introduction

• The research focuses on the increasing need for **artificial intelligence (AI)** techniques in **intrusion detection systems (IDS)** due to the rising number of network intrusions.

• The utilization of explainable AI (XAI) methods is crucial for enhancing the transparency and interpretability of AI models in real-world IDS.

• The study introduces an **end-to-end framework** for **evaluating black-box XAI methods** for network intrusion detection, aiming to provide insights into the strengths and limitations of these techniques.

Results

Motivation

• The lack of interpretability in current AI-based IDS poses challenges for security analysts, requiring them to sift through large volumes of data to identify abnormal behaviors.

• Achieving high accuracy in results and providing comprehensible explanations for AI algorithms are essential in network intrusion detection to build trust and understanding among security analysts.

• XAI frameworks play a vital role in assisting analysts by elucidating AI decisions, facilitating efficient investigations, and ultimately saving time for human security analysts in network security tasks.

Our Contribution

• The research proposes an end-to-end framework for evaluating XAI techniques for network intrusion detection tasks, assessing both global and local explanations.

• Six different evaluation metrics are analyzed for two popular black-box XAI techniques, SHAP and LIME, under three network intrusion datasets and seven AI models.

• The **source codes** of the evaluation framework are **released to the community**, serving as a baseline for XAI evaluation in network intrusion detection and encouraging further development with new datasets and models.

Framework

XAI - Evaluation

	Detect	Number of Labels	Number of Features	Number of Semples
Datasets	Dataset	Number of Labels	Number of reatures	Number of Samples
	CICIDS-2017	7	78	2,775,364
	RoEduNet-SIMARGL2021	3	29	31,433,875
	NSL-KDD	5	41	148517

Robustness

Key Takeaways

• Creation of a novel end-to-end framework for evaluating XAI techniques for network intrusion detection tasks, assessing both global and local explanations.

• XAI techniques still need improvement in the six metrics to be applied in a production environment, but this work is an important step in this direction.

Metric	Descriptive Accuracy	Sparsity	Stability	Completeness	Robustness	Efficiency
SHAP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LIME			\checkmark		\checkmark	\checkmark

Acknowledgement

This work was supported by AnalytixIN, Enhanced Mentoring Program with Opportunities for Ways to Excel in Research (EMPOWER); By the 1st Year Research Immersion Program (1RIP) Grants from the Office of the Vice Chancellor for Research at Indiana University– Purdue University Indianapolis; and in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute.

