
More is Merrier: Relax the Non-Collusion Assumption in
Multi-Server PIR

Tiantian Gong, Ryan Henry, Alexandros Psomas, Aniket Kate

What is Private Information Retrieval (PIR) [CKGS95]

A 𝒌, 𝒕 -PIR scheme for a database 𝔻 with 𝑛 entries:

𝐶 Client’s	index	of	interest:	𝑥 ∈ [𝑛]

𝑆! 𝑆"𝑆# …

Query	string	𝑞! ∈ {0,1}∗

𝑞# 𝑞$ 𝑞 = 𝑄𝑢𝑒𝑟𝑦(𝑥)

𝔻% = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	(𝑎!, … , 𝑎$)

Query	generation	algorithm

Reconstruction	algorithm

Security
o Correctness – 𝐶 can reconstruct 𝔻%: H 𝑋|𝑎! = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝔻, 𝑞!), … , 𝑎$ = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝔻, 𝑞$) = 0
o Privacy (IT, computational) – less than 𝒕 + 𝟏 parties learn no extra info: H 𝑋| 𝑞& &∈(, (*+

= H(𝑋)

𝑆$

𝑞,

𝑎- = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒	(𝔻, 𝑞-)
Answer	generation	algorithm

Answer	string	𝑎!
𝑎# 𝑎, 𝑎$

𝐶

▷ 𝒌-out-of-𝒌,	𝒕-private
0 ≤ 𝑡 < 𝑘

𝔻

H(⋅)	computes	the	entropy	of	a	random	variable;	𝑋	is	the	random	variable	for	𝑥

▷ ℓ	total servers, 𝑘-out-of-𝑘, 1-private

1. Multi-Server 1-Private PIR is Efficient
Our model: ℓ, 𝒌, 𝟏 -PIR where ℓ ≥ 𝑘 ≥ 2, database size 𝑁 = 𝑛×𝑏

Communication
complexity

IT privacy Computational privacy

Single-server 𝑁 polylogarithmic

2-Server
𝑛
.(!"# !"# $

!"# $)
[DG16]

polylogarithmic

3-Server 2.(123 4 123 123 4)[Efremenko09] -

𝑘-Server 1-private: 𝑛.(
!"# !"# %
% !"# %)	[BIKR02]

𝑡-private: 𝑂($
&

+ log(𝑘 𝑛
!/⌊&%'() ⌋)) [WY05]

1-private: 𝜆 + 2 log 𝑘 log 4
8
+ ℓ
ℓ:!

𝑏
[HH19] (e.g., 𝜆 = 128,	then
130 log 𝑘 log 𝑛 − 7 + ℓ/ ℓ − 1 𝑏)

𝑂 log 𝑛 -Server 𝑂(log# 𝑛 log log 𝑛) [CKGS95] -

Computation complexity (cPIR): polylogarithmic [LMW23] VS ;ℓ:! bit operations per server [HH19]

ℓ, 𝒌, 𝟏 -PIR assumes no pairwise collusion

yet collusion is easy to implement over unobserved

communication channels and impossible to detect

Anonymous channels Side channels
Encrypted communication
channels

𝑞-

Can we relax the non-collusion assumption?

But

2. What we do and How
What : Relax the non-collusion assumption to rationality assumption, i.e.,
servers are rational or malicious

How: Given two premises / our facts
1. We cannot directly detect collusion and collusion can be realized with any

protocol, e.g., MPC, TEE, magical clouds, etc.
2. After successful collusion, at least some colluding parties have learned

something nontrivial about the index 𝑥	or entry 𝔻! --- denote as 𝑓(𝑥)

we design a mechanism such that
(a) it induces a game where exactly one of the servers can take advantage of the
information gain 𝑓(𝑥) to maximize its utility at the expense of others,
(b) resulting in some party unwilling to collude to give others such an advantage

What is a mechanism

Agents’ type space

Θ

(𝑥, 𝑝)

𝑂

Allocation rule Payment rule

An algorithm on a public bulletin board that participants
can interact withOutcome space

𝑂⋆𝜃

Mechanism

messages

In theory

In practice

Mechanism 𝑴
Unknown: secrets 𝑓 𝑥 , 𝑓 𝑥% Known: server set {𝑆!, … , 𝑆ℓ}
▷ Winner selection rule 𝑾
If any server 𝑆' tells 𝑀 the correct secret first along with its input and a zero-knowledge
proof [Groth16, GWC19, OB22] of inequality is not provided by other servers 𝑆(' by time Δ,
select 𝑆' as winner and mark all other servers as colluders

▷ Payment rule 𝑷
(1) Reward the winner a proper amount;
(2) Penalize each marked colluder a proper amount;
(3) Penalize 𝑆! a proper amount if it tells a wrong secret;
(4) Charge proper amount of service fees for each queried server from the client and

transfer to servers if there is no collusion after a privacy protection window

3. Mechanism overview

4. Protocol overview

5. Communication and computation overhead
On paper One additional commitment per message – instantiated with SHA-3

Table 1. Gas costs summary

Implementation as a smart contract on Ethereum
CheckCircuits(⋅) checks if the function is trivial with oracle services

𝐶

𝑥, sample a random
index 𝑥= ≠ 𝑥
Sample a random
permutation 𝑃𝑒𝑟𝑚

𝑆!

𝑆"

𝑆#

…

𝐜𝟏, … , 𝒄𝟐𝒌 	

𝑆$

𝒄𝟏
(𝒋) = Commit 𝑎!

& 	

𝒄𝟐
(𝒋) = Commit(𝑎#

(&))

𝑞 = 𝑄𝑢𝑒𝑟𝑦(𝑥)
𝑞= = 𝑄𝑢𝑒𝑟𝑦(𝑥=)

Mechanism 𝑀

𝒄𝟏
(𝟏), 𝒄𝟐

(𝟏)

𝒄𝟏
(𝟐), 𝒄𝟐

(𝟐)

𝒄𝟏
(𝟑), 𝒄𝟐

(𝟑)

𝒄𝟏
(𝒌), 𝒄𝟐

(𝒌)

(𝒄𝟏, 𝒄𝟐) = 𝑃𝑒𝑟𝑚(Commit 𝑞! , Commit 𝑞!=)	
…
(𝒄𝟐𝐤:𝟏, 𝒄𝟐𝐤) = 𝑃𝑒𝑟𝑚(Commit 𝑞$, Commit 𝑞$=)	

Assume a secure commitment scheme:
- Commit ⋅
- Reveal ⋅

𝒂𝟏
(𝟏), 𝒂𝟐

(𝟏)

𝒂𝟏
(𝟐), 𝒂𝟐

(𝟐)

𝒂𝟏
(𝒌), 𝒂𝟐

(𝒌)

𝒂𝟏
(𝟑), 𝒂𝟐

(𝟑)

…

𝐑𝐞𝐯𝐞𝐚𝐥 𝒄𝟏 , 𝑹𝒆𝒗𝒆𝒂𝒍(𝒄𝟐)

𝐑𝐞𝐯𝐞𝐚𝐥(𝒄𝟏
(𝒌)),	 𝑹𝒆𝒗𝒆𝒂𝒍(𝒄𝟐

𝒌)

Mike Focosi
2024 - AIP - 4ZY-3EP - More is Merrier: Relax the Non-Collusion Assumption in Multi-Server PIR - gong146@purdue.edu - Tiantian Gong

