The Center for Education and Research in Information Assurance and Security

More is Merrier: Relax the Non-Collusion Assumption in Multi-Server PIR

Tiantian Gong, Ryan Henry, Alexandros Psomas, Aniket Kate

What is a mechanism

An algorithm on a public bulletin board that participants can interact with In practice

Security

• **Correctness** – *C* can reconstruct $\mathbb{D}_{\mathbf{x}}$: H(X| $a_1 = Compute(\mathbb{D}, \mathbf{q}_1), \dots, a_k = Compute(\mathbb{D}, \mathbf{q}_k)) = 0$ • **Privacy** (IT, computational) – less than $\mathbf{t} + \mathbf{1}$ parties learn no extra info: H $\left(X|\{q_j\}_{j \in S, |S| \le t}\right) = H(X)$

 $H(\cdot)$ computes the entropy of a random variable; X is the random variable for x

1. Multi-Server 1-Private PIR is Efficient

CERAS

Our model: $(\ell, k, 1)$ -**PIR** where $\ell \ge k \ge 2$, database size $N = n \times b$ $\triangleright \ell$ total servers, k-out-of-k, 1-private

Communication complexity	IT privacy	Computational privacy		
Single-server	N	polylogarithmic		
2-Server	$n^{O(\sqrt{\frac{\log \log n}{\log n}})}$ [DG16]	polylogarithmic		
3-Server	$2^{O(\sqrt{\log n \log \log n})}$ [Efremenko09]	_		
<i>k</i> -Server	1-private: $n^{O(\frac{\log \log k}{k \log k})}$ [BIKR02]	1-private: $(\lambda + 2) \log k \left[\log \frac{n}{\lambda} \right] + \frac{\ell}{\ell - 1} b$		
	<i>t</i> -private: $O(\frac{k^2}{t} \log(k n^{1/\lfloor \frac{2k-1}{t} \rfloor}))$ [WY05]	[HH19] (e.g., $\lambda = 128$, then 130 log k ($\lceil \log n \rceil - 7$) + $\ell/(\ell - 1)b$)		
O(log n)-Server	$O(\log^2 n \log \log n)$ [CKGS95]	_		
Computation com	plexity (cPIR): polylogarithmic [LMW23] V	'S $\frac{N}{\ell-1}$ bit operations per server [HH19]		
But (<i>l</i> , <i>k</i> , 1)-	PIR assumes no pairwise collusion			
vot colluc	ion is oney to implement over upobser	vod		

3. Mechanism overview

Mechanism M

Unknown: secrets f(x), $f(x^r)$

▷ Winner selection rule W

Known: server set $\{S_1, \dots, S_\ell\}$

If any server S_i tells M the correct secret first along with its input and a *zero-knowledge* proof [Groth16, GWC19, OB22] of inequality is not provided by other servers S_{-i} by time Δ , select S_i as winner and mark all other servers as colluders

▷ Payment rule *P*

- (1) Reward the *winner* a proper amount;
- (2) Penalize each marked *colluder* a proper amount;
- (3) Penalize S_1 a proper amount if it tells a wrong secret;
- (4) Charge proper amount of service fees for each queried server from the client and transfer to servers if there is no collusion after a privacy protection window

4. Protocol overview

Assume a secure <u>commitment scheme</u>:

2 Reveal(c_1), Reveal(c_2)

 $- Commit(\cdot)$ $al(c_2) - Reveal(\cdot)$

(3)

yet conusion is easy to implement over unobserved

communication channels and **impossible** to detect

Anonymous channels

Encrypted communication channels

Side channels

 q_i

Can we relax the non-collusion assumption?

2. What we do and How

What : Relax the non-collusion assumption to rationality assumption, i.e., servers are rational or malicious

How: Given two premises / our facts

- 1. We cannot directly detect collusion and collusion can be realized with any protocol, e.g., MPC, TEE, magical clouds, etc.
- 2. After successful collusion, at least some colluding parties have learned something nontrivial about the index x or entry \mathbb{D}_x --- denote as f(x)

we **design a mechanism** such that

(a) it induces a *game* where *exactly* one of the servers can take advantage of the *information gain* f(x) to maximize its utility at the expense of others, (b) resulting in some party *unwilling* to collude to give others such an advantage

5. Communication and computation overhead

On paper One additional commitment per message – instantiated with SHA-3
Implementation as a smart contract on Ethereum
CheckCircuits(·) checks if the function is trivial with oracle services

Table 1. Gas costs summary

Normal service	Gas	Dollars	Collusion resolution	Gas	Dollars
Contract deployment	4697299	\$8.63	$Accuse(\cdot)$	223766	\$0.41
$Deposit(\cdot)$	105436	\$0.19	$CheckCircuits(\cdot)$	66991+	\$0.12+
$PostRequests(\cdot)$	405657	\$0.74	$VerifyExchange(\cdot)$	61822	\$0.11
$SubmitResponse(\cdot)$	97400	\$0.18	$VerifyGeneralFunc(\cdot)$	275279	\$0.51
$ClaimServiceFee(\cdot)$	33103	\$0.06	$zkVerify(\cdot)$	2286423	\$4.20

