CERIAS

The Center for Education and Research in Information Assurance and Security

Sharding SMR with Optimal-size Shards for Highly Scalable Blockchains

Jianting Zhang¹, Zhongtang Luo¹, Raghavendra Ramesh², Aniket Kate^{1,2}

¹Purdue University, ²Supra Research

Introduction

- Blockchain scalability is evaluated by performance and network scale.
- With more nodes joining in, a scalable blockchain system is expected to handle more transactions.

Blockchain Sharding

- Sharding scales a blockchain by dividing nodes into shards for parallel execution.
- Efficiency-security dilemma: large shards are required to guarantee security.

Key Observations

Obs1: Blockchains rely on state machine replication to maintain a ledger securely, performing the repeated tasks:

- ① Dissemination (data availability); ② Ordering; ③ Execution
- Tasks ①③: resource-intensive but 1/2 fault tolerance
- Tasks ②: resource-saving but only 1/3 fault tolerance

Obs2: The larger the fault tolerance a shard achieves, the smaller the size of the shard is needed.

Our Solution

Idea: deconstructing SMR to create more lightweight shards.

- Ordering-processing sharding scheme: one ordering shard performs the ordering task and multiple processing shards perform the dissemination and execution tasks.
- Safety-liveness separation: trade liveness threshold f_L for larger safety threshold f_S , create much smaller shards.

Evaluations

More details

