

The Center for Education and Research in Information Assurance and Security

# Attacking and Improving the Tor Directory Protocol



Duke

Zhongtang Luo<sup>1</sup>, Adithya Bhat<sup>1</sup>, Kartik Nayak<sup>2</sup>, Aniket Kate<sup>13</sup>
Purdue University<sup>1</sup>, Duke University<sup>2</sup>, Supra Oracle<sup>3</sup>
Appearing at IEEE S&P 2024

# What is the Tor Directory Network?

- The Tor network enhances clients' privacy by routing traffic through an overlay network of volunteered intermediate relays.
- Tor employs a distributed protocol among nine hard-coded Directory Authority (DA) servers to securely disseminate information about these relays to produce a new consensus document every hour.

## Cool. Why is it vulnerable?

- The Tor network itself does not defend against attacks on the relay list (e.g. Sybil relays, relays with irregular information). Therefore, all defense relies on external audits.
- Tor uses **an outdated consensus system** that uses two rounds of broadcast...



Figure: Two rounds of all-to-all broadcast (and very little else) happen within the procedure.

This is vulnerable to an equivocation attack!

# How can we attack the protocol?

An attacker needs to...

- Play nice with half of the authorities.
- Lie to the other half of the authorities and inject some incorrect information on the relay.

He can then run away with an incorrect relay list signed by a majority of the authorities without being found!

#### **Paper**



## Poster



That sounds very convoluted. What is so bad about an incorrect relay list?

```
r test010r kNeiqbQSrPh/JPuJiTrcz1bNDTY Nf2VyvkI...

2022-04-05 17:27:05 127.0.0.1 5010 0
.....

w Bandwidth=14597871
.....
----BEGIN SIGNATURE----
KtR7wLvxNtat1Kly71bjJVyWp9gwuPbggnQYBdZI8dWLm7M...
....
----END SIGNATURE----

Apr 05 13:27:20.657 [warn] A consensus needs 5 good signatures from recognized authorities for us to accept it. This ns one has 2 (test003a test004a).
7 (test005a test000a test006a test002a test007a test008a test001a) of the authorities we know didn't sign it.
```

Figure: A demonstration of the attack from an experiment. Note the very large bandwidth 14597871 (although in a very small font).

The attacker can use incorrect parameters (e.g. very large bandwidth) to attract users to use only his relays, which **totally breaks the anonymity** without anyone finding out about it.

### How should we fix it?

We provide two fixes:

 Patch the consensus health monitor so that it includes an equivocation detection mechanism

| Sender     | Receiver                                                        |
|------------|-----------------------------------------------------------------|
| moria1     | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| tor26      | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| dizum      | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| gabelmoo   | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| dannenberg | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| maatuska   | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| longclaw   | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| bastet     | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |

#### Already online and working!

■ Patch the protocol so that it is a robust consensus protocol



Figure: Inspired by the famous Dolev-Strong protocol, we design a protocol that secures the directory protocol.



Comparable performance with the original protocol!



