2024 - AIP - 167-LNV - Semi Differential Privacy - cho472@purdue.edu - Young Hyun Cho

CERIAS

The Center for Education and Research in Information Assurance and Security

Semi Differential Privacy

Young Hyun Cho and Jordan Awan Department of Statistics, Purdue University

Motivation

Differential Privacy and the 2020 Census

How will differential privacy affect 2020 census data?

-Differential privacy has strong guarantees, but is not

Preliminary

A randomized mechanism M(X) is (ε, δ) -Differential Privacy if for any $\varepsilon, \delta > 0$, $\mathbb{P}(M(X) \in S) \le e^{\varepsilon} \mathbb{P}(M(X') \in S) + \delta,$

 $\rho - zCDP$ if for any $\rho \ge 0$ and for all $\alpha \in (1, \infty)$, $D_{\alpha}(M(X)||M(X')) \leq \rho \alpha,$

always implemented exactly

-For example, US Census publishes a combination of DP and exact statistics

-Currently NO satisfactory method of quantifying the privacy in such settings

where D_{α} is α -Renyi divergence, for any databases X,X' such that $d(X,X') \leq 1$

Smaller Privacy Parameters (ε, δ) or $\rho \Rightarrow$ Stronger Privacy

BUT THE SAME SPIRIT: Any Pair of Input Data X,X' with ONE DIFFERENT ENTRY is Difficult to distinguish by observing the output of M.

-What happens if true statistic T(X) is published along with DP M(X)? -Especially, what if there is no neighboring data X,X' s.t. T(X) = T(X')? That is, $\{(X, X'): T(X) = T(X') \text{ and } d(X, X') \le 1\} = \phi$

We propose a framework semi-DP, which properly accounts for the combination of private and non-private releases. Under semi-DP we derive optimal mechanisms under a variety of scenarios.

Definition of Semi-DP

Algorithm 1 Semi-adjacent Parameter a

- 1: Input: True Statistics T(X)
- 2: Define $\mathcal{X}^n|_T = \{X' \in \mathcal{X}^n : T(X') = T(X)\}$
- 3: for $i \in [n]$ do
- 4: Define $\mathcal{P}'_i = \{x'_i \in \mathcal{X} : \exists Y \in \mathcal{X}^{n-1} \text{ s.t. } T\left(\begin{vmatrix} x'_i \\ Y \end{vmatrix} \right) = T\left(\begin{vmatrix} x_i \\ X_{-i} \end{vmatrix} \right) \}$

Mechanism Design

Goal: Add the least noise and achieve the target privacy parameter

Algorithm 2 Generalized Optimal K-norm mechanism: ϵ -semi DP

- 1: Input: Statistics T(X) to be released, Mechanism θ to be privatized
- 2: Calculate the semi-adjacent parameter a

5: **if**
$$\mathcal{P}'_{i} = \emptyset$$
 then
6: Put $a_{i} = \infty$
7: **else**
8: Define $\mathcal{X}'_{i} = \left\{ \left(\begin{bmatrix} x'_{i} \\ Y \end{bmatrix} \right) : x'_{i} \in \mathcal{P}'_{i}, Y = \operatorname{argmin}_{Y \in \mathcal{X}^{n-1}} d(X_{-i}, Y) \text{ s.t. } T\left(\begin{bmatrix} x'_{i} \\ Y \end{bmatrix} \right) = T(X) \right\}$
9: $a_{i} = \max_{X'_{i} \in \mathcal{X}'_{i}} d(X, X'_{i})$
10: **end if**
11: **end for**
12: **Output:** $a = \max_{i \in [n]} a_{i}$

Given semi-adjacent parameter *a*, our semi-DP makes difficult to distinguish any pair of data in

 $\{(X, X'): T(X) = T(X') \text{ and } d(X, X') \le a\}$

Analysis on US 2020 Census

T(X): True Population for each state, the District of Columbia and Puerto Rico \Rightarrow semi-adjacent parameter a = 2

Census Advertised: ρ -zCDP with $\rho = 0.213$ Semi-DP framework: ρ -zCDP with $\rho = 0.852$

3: Define the sensitivity space $S_{\theta|T} = \{\theta(X) - \theta(X') : d(X, X') \le a, T(X) = T(X')\}$ 4: Define $\operatorname{Proj}_{S_{\theta|T}}$ be the orthogonal projection operator on to $\operatorname{span}(S_{\theta|T})$ 5: Calculate $S_{\operatorname{Proj}} = \{\operatorname{Proj}_{S_{\theta|T}} \theta(X) - \operatorname{Proj}_{S_{\theta|T}} \theta(X') : d(X, X') \le a, T(X) = T(X')\}$ 6: Let Hull(S_{Proj}) be a convex hull of S_{Proj} and define a norm $\|\cdot\|_K$ by $\|u\|_K = \inf\{c \in \mathbb{R}^{\geq 0} : u \in cH\}$ 7: Calculate K-norm sensitivity $\Delta_K = \sup_{u \in S_{\text{Proj}}} \|u\|_K$ 8: Sample $V \sim f_V(v) = c \exp\left(-\frac{\epsilon}{\Delta_K} \|v\|_K\right)$ 9: Output: $M(X) = \theta(X) + V$

Generalized Optimal K-norm mechanism achieves ε -semi DP with the least additive noise, so optimal!

Algorithm 3 Gaussian Mechanism: μ -semi GDP 1: Input: Statistics T(X) to be released, Mechanism θ to be privatized 2: Calculate the semi-adjacent parameter a 3: Define the sensitivity space $S_{\theta|T} = \{\theta(X) - \theta(X') : d(X, X') \le a, T(X) = T(X')\}$ 4: Calculate P be the orthogonal projection matrix onto span $(S_{\theta|T})$ 5: Calculate l_2 -norm sensitivity $\Delta_2 = \sup_{u \in S_{\theta|T}} \|u\|_K$ 6: Sample $N \sim N(0, (\frac{\Delta_2}{\mu})^2 P)$ 7: Output: $M(X) = \theta(X) + N$

Gaussian Mechanism achieves μ -semi GDP with less noise than naïve approaches

Additive Gaussian noise can also achieve (ε, δ)-DP and ρ -zCDP

